Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T01:49:57.898Z Has data issue: false hasContentIssue false

Generating Functions for Ultraspherical Functions

Published online by Cambridge University Press:  20 November 2018

B. Viswanathan*
Affiliation:
University of New Brunswick, Fredericton, N.B.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The ultraspherical function

1.1

for |1 — x| < 2 is a solution of the differential equation

1.2

This equation has two independent solutions; of the two, only Pn(λ)(x) is analytic at x = 1, aside for some special values of λ, which we shall not consider.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1968

Footnotes

This paper is a condensation of a doctoral dissertation submitted at the University of New Brunswick in May 1965.

References

1. Bloh, E. L., On an expansion of Bess el functions in a series ofLegendre functions (from Math. Revs., 16 (1955), 587).Google Scholar
2. Brafman, F., Generating functions of Jacobi and related polynomials, Proc. Amer. Math. Soc.,£ (1951), 942949.10.1090/S0002-9939-1951-0045875-2CrossRefGoogle Scholar
3. Brafman, F., An ultraspherical generating function, Pacific J. Math., 7 (1957), 13191323.Google Scholar
4. Brafman, F., A generating function for associated Legendre polynomials, Quart. J. Math., 8 (1957), 8183.Google Scholar
5. Carlitz, L., Some generating functions for the Jacobi polynomials, Boll. Un. Math. Ital., 16 1961), 150155.Google Scholar
6. Rainville, E. D., Special functions (New York, 1960).Google Scholar
7. Szego, G., Orthogonal polynomials, Colloquium Publications 23 (Amer. Math. Soc, New York, 1959).Google Scholar
8. Toscano, L., Funzione generatice dei prodotti di polinomi diLaguerre con gli ultrasferici (from Math. Revs., (1951), 333).Google Scholar
9. Truesdell, C., A unified theory of special functions (Princeton, 1948).Google Scholar
10. Watson, G. N., Theory of Bessel functions (Cambridge, 1952).Google Scholar
11. Weisner, L., Group theoretic origin of certain generating functions, Pacific J. Math., 5 (1955), 10331039.Google Scholar
12. Weisner, L., Generating functions for Hermite functions, Can. J. Math., 11 (1959), 141147.Google Scholar
13. Weisner, L., Generating functions for Bessel functions, Can. J. Math., 11 (1959), 148155.Google Scholar
14. Yadao, G. M., Generating functions for associated Legendre polynomials, Quart. J. Math., 10 (1963), 120122.Google Scholar