Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T06:01:20.029Z Has data issue: false hasContentIssue false

Generating Functions for Hermite Functions

Published online by Cambridge University Press:  20 November 2018

Louis Weisner*
Affiliation:
University of New Brunswick
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Hermite's function Hn(x) is denned for all complex values of x and n by

where F (α; γ; x) is Kummer's function with the customary indices omitted. It satisfies the differential equation

1.1

of which

is a second solution. Every solution of (1.1) is an entire function.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1959

References

1. Bateman, H., A partial differential equation connected with the functions of the parabolic cylinder, Bull. Amer. Math. Soc, 41 (1935), 884–93.Google Scholar
2. Feldheim, E., Développements en série de polynomes d'Hermite et de Laguerre à l'aide des transformations de Gauss et de Hankel, Neder. Akad. Wetensch. 43 (1940), 224-48, 378- 89.Google Scholar
3. Mehler, F. G., Ueber die Entwicklung einer Funktion von beliebig vielen Variablen nach Laplaceschen Functionen hôherer Ordnung, J. Reine Angew. Math., 66 (1866), 161–76.Google Scholar
4. Truesdell, C., An essay toward a unified theory of special functions, Ann. Math. Studies, no. 18 (Princeton, 1948).Google Scholar
5. Weisner, L., Group-theoretic origin of certain generating functions, Pacific J. Math. 5 (1955), 1033-9.Google Scholar