No CrossRef data available.
Published online by Cambridge University Press: 27 March 2023
Motivated by the near invariance of model spaces for the backward shift, we introduce a general notion of $(X,Y)$-invariant operators. The relations between this class of operators and the near invariance properties of their kernels are studied. Those lead to orthogonal decompositions for the kernels, which generalize well-known orthogonal decompositions of model spaces. Necessary and sufficient conditions for those kernels to be nearly X-invariant are established. This general approach can be applied to a wide class of operators defined as compressions of multiplication operators, in particular to Toeplitz operators and truncated Toeplitz operators, to study the invariance properties of their kernels (general Toeplitz kernels).
The work of the first author was partially supported by FCT/Portugal through projects UIDB/04459/2020 and UIDP/04459/2020. The research of the second and third authors was financed by the Ministry of Higher Education and Science of the Republic of Poland.