Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T05:43:30.647Z Has data issue: false hasContentIssue false

Gaining Units from Units

Published online by Cambridge University Press:  20 November 2018

Leon Bernstein*
Affiliation:
Illinois Institute of Technology, Chicago, Illinois
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dirichlet was the first to give an ingenious proof of the exact (finite) number of elements in the basis of the multiplicative group of units in any algebraic number field of arbitrary degree n. These elements are called fundamental units. If the field is real and its generating number is a real root of a polynomial over Q of degree n﹜ having r1 real and r2 pairs of conjugate complex roots, so that r1 + 2r2 = n, then Dirichlet's famous result states that the exact number of fundamental units in Q(w) equals r1 + r2 — 1.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1977

References

1. Bergmann, G., Untersuchungen zur Einheitsgruppe in den total komplexen algebraischen Zahlkoerpern sechsten Grades (Ueber P) im Rahmen der “Théorie der Netze”, Math. Ann. 161 (1965), 349364.Google Scholar
2. Bergmann, G. Zur numerischen Bestimmung einer Einheitsbasis, Math. Ann. 166 (103-105).Google Scholar
3. Bergmann, G. Beispiele numerischer Einheitenbestimmung, Math. Ann. 167 (1966), 143168.Google Scholar
4. Hasse, H. and Bernstein, L., An explicit formula for the units of an algebraic number field of degree n, Pacific J. Math. 30 (1969), 293365.Google Scholar
5. Hasse, H. and Bernstein, L. Einheitenberechnung mittels des Jacobi-Perronschen Algorithmus, J. Reine Angew. Math. 218 (1965), 5169.Google Scholar
6. Bernstein, L., The modified algorithm of Jacobi-Perron, Mem. Amer. Math. Soc. 67 (1966).Google Scholar
7. Bernstein, L. On units and fundamental units, J. Reine Angew. Math. 257 (1972), 129145.Google Scholar
8. Bernstein, L. Cycles and units in the period in quadratic algebraic number fields, Pacific J. Math., in print.Google Scholar
9. Bernstein, L. Periodische Kettenbrueche beliebiger Periodenlaenge, Math. Zeit. 86 (1964), 128135.Google Scholar
10. Bernstein, L. Der Hasse-Bernsteinsche Einheitensatz fuer den verallgemeinerten Jacobi-Perronschen Algorithmus, Abh. math. Seminar 43 (1975), 192202 Google Scholar
11. Bilevich, K. K., On units in algebraic fields of third and fourth degree, (Russian) Math. Sbornik 40 (82) (1956), 123136.Google Scholar
12. Halter-Koch, F., Unanbhaengige Einheitensysteme fuer eine allgemeine Klasse algebraischer Zahlkoerper, Abh. math. Seminar 43 (1975), 8591.Google Scholar
13. Jacobi, C. G. J., Allgemeine Théorie der kettenbruchaehnlichen Algorithmen etc., J. Reine Angew. Math. 69 (1869), 2964.Google Scholar
14. Mahler, K., Ueber die Annaeherung akgebraischer Zahlen dutch periodische Algorithman, Acta Math. 68 (1937), 109144.Google Scholar
15. Mahler, K. Periodic algorithms for algebraic number fields, Lectures given at the Fourth Summer Research Institute of the Australian Mathematical Soc, held at the University of Sydney, January, 1964.Google Scholar
16. Perron, O., Grundlagen fuer eine Théorie des Jacobischen Kettenbruchalgorithmus, Math. Ann. 64 (1907), 176.Google Scholar
17. Perron, O. Die Lehre von den Kettenbruechen (Teubner, Stuttgart, 1954).Google Scholar
18. Stender, H.-J., Eine formel fuer Grundeinheiten in reinen algebraischen Zahlkoerpern dritten, vierten und secheten Grades, J. Number Theory, in print.Google Scholar
19. Stender, H.-J. Ueber die Grundeinheit fuer spezielle unendliche Klassen reiner kubischer Zahlkoerper, Abh. math. Seminar 33 (1969), 203215.Google Scholar
20. Stender, H.-J. Grundeinheiten fuer einige unendliche Klassen biquadratischer etc., J. Reine Angew. Math. 264 (1973), 207220.Google Scholar
21. Szekeres, G., Multidimensional continued fractions, Annales Univ. Sc. Budapest, de Rolando Etovos Norn., Sectio Math., Vol. XIII, (1970), 113140.Google Scholar
22. Voronoi, G. F., On a generalization of continued fractions (Russian) Doctoral Dissertation, Warsaw (1896).Google Scholar
23. Yamomoto, Y., Real quadratic number fields with large fundamental Units, Osaka J. Math. 8 (1971), 261271.Google Scholar
24. Yokoi, H., Units and class numbers of real quadratic fields, Nagoya Math. J. 37 (1970), 6165.Google Scholar
25. Zassenhaus, H., On the units of orders, J. Algebra 20 (I972), 368395.Google Scholar