Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-20T06:21:14.150Z Has data issue: false hasContentIssue false

Fundamental Tone, Concentration of Density, and Conformal Degeneration on Surfaces

Published online by Cambridge University Press:  20 November 2018

Alexandre Girouard*
Affiliation:
Département deMathématiques et Statistique, Université de Montréal, Montréal, Canada H3C 3J7, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the effect of two types of degeneration of a Riemannian metric on the first eigenvalue of the Laplace operator on surfaces. In both cases we prove that the first eigenvalue of the round sphere is an optimal asymptotic upper bound. The first type of degeneration is concentration of the density to a point within a conformal class. The second is degeneration of the conformal class to the boundary of the moduli space on the torus and on the Klein bottle. In the latter, we follow the outline proposed by N. Nadirashvili in 1996.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2009

References

[1] Berger, M., Gauduchon, P., and Mazet, E., Le spectre d’une variètè riemannienne. Lecture Notes in Mathematics 194, Springer-Verlag, Berlin-New York, 1971.Google Scholar
[2] Berger, M., Sur les premières valeurs propres des variètès riemanniennes. Compositio Math. 26(1973), 129–149.Google Scholar
[3] Chern, S. S., do Carmo, M., and Kobayashi, S., Minimal submanifolds of a sphere with second fundamental form of constant length. In: Functional analysis and related fields, Springer, New York, 1970, pp. 59–75.Google Scholar
[4] Colbois, B. and Dodziuk, J., Riemannian metrics with large ƛ1. Proc. Amer. Math. Soc. 122(1994), no. 3, 905–906.Google Scholar
[5] Colbois, B. and El Soufi, A., Extremal eigenvalues of the Laplacian in a conformal class of metrics: the ‘conformal spectrum’. Ann. Global Anal. Geom. 24(2003), no. 4, 337–349.Google Scholar
[6] El Soufi, A., Giacomini, H., and Jazar, M., Greatest least eigenvalue of the laplacian on the klein bottle, arXiv: math. MG/0506585 v1 29 Jun 2005.Google Scholar
[7] El Soufi, A. and Ilias, S., Riemannian manifolds admitting isometric immersions by their first eigenfunctions. Pacific J. Math. 195(2000), no. 1, 91–99.Google Scholar
[8] El Soufi, A. and Ilias, S., Immersions minimales, première valeur propre du laplacien et volume conforme. Math. Ann. 275(1986), no. 2, 257–267.Google Scholar
[9] Friedlander, L. and Nadirashvili, N., A differential invariant related to the first eigenvalue of the Laplacian, Internat. Math. Res. Notices 1999, no. 17, 939–952.Google Scholar
[10] He, H. X. and Tang, Z. Z., An isometric embedding of Möbius band with positive Gaussian curvature. Acta Math. Sin. 20(2004), no. 6, 961–964.Google Scholar
[11] Hersch, J., Quatre propriètès isopèrimètriques des membranes sphèriques homogènes. C. R. Acad. Sci. Paris, Sèr. A-. 270(1970), A1645–A1648.Google Scholar
[12] Hurwitz, A., Sur le problème des isopèrimètres, Comptes rendus Acad. Sci. Paris, 132, (1901), 401-403.Google Scholar
[13] Jakobson, D., M. Levitin, Nadirashvili, N., Nigam, N., and Polterovich, I., How large can the first eigenvalue be on a surface of genus two? Int. Math. Res. Not. 2005, no. 63, 3967–3985.Google Scholar
[14] Jakobson, D., Nadirashvili, N., and Polterovich, I., Extremal metric for the first eigenvalue on a Klein bottle. Canad. J. Math. 58(2006), no. 2, 381–400.Google Scholar
[15] Lawson, H. B., Local rigidity theorems for minimal hypersurfaces. Ann. of Math. (2)). 89(1969), 187–197.Google Scholar
[16] Montiel, S. and Ros, A., Minimal immersions of surfaces by the first eigenfunctions and conformal area. Invent. Math. 83(1985), no. 1, 153–166.Google Scholar
[17] Nadirashvili, N., Berger's isoperimetric problem and minimal immersions of surfaces. Geom. Funct. Ana. 6(1996), no. 5, 877–897.Google Scholar
[18] Li, P. and Yau, S. T., A new conformal invariant and its applications to theWillmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69(1982), 269–291.Google Scholar
[19] Schoen, R. and Yau, S. T., Lectures on differential geometry. Conference Proceedings and Lecture Notes in Geometry and Topology, I. International Press, Cambridge, MA, 1994.Google Scholar
[20] Yang, P. and Yau, S. T., Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)). 7(1980), no. 1, 55–63.Google Scholar