Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-18T10:00:07.012Z Has data issue: false hasContentIssue false

Fundamental Group of Simple C*-algebras with Unique Trace III

Published online by Cambridge University Press:  20 November 2018

Norio Nawata*
Affiliation:
Graduate School of Mathematics, Kyushu University, Motooka, Fukuoka, 819-0395, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce the fundamental group $\mathcal{F}\left( A \right)$ of a simple $\sigma $-unital ${{C}^{*}}$–algebra $A$ with unique (up to scalar multiple) densely defined lower semicontinuous trace. This is a generalization of Fundamental Group of Simple${{C}^{*}}$-algebras with Unique Trace I and II by Nawata and Watatani. Our definition in this paper makes sense for stably projectionless ${{C}^{*}}$-algebras. We show that there exist separable stably projectionless ${{C}^{*}}$-algebras such that their fundamental groups are equal to $\mathbb{R}_{+}^{\times }$ by using the classification theorem of Razak and Tsang. This is a contrast to the unital case in Nawata and Watatani. This study is motivated by the work of Kishimoto and Kumjian.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2012

References

[1] Blackadar, B., Operator algebras: Theory of C*-algebras and von Neumann algebras. Encyclopaedia of Mathematical Sciences, 122, Operator Algebras and Non-commutative Geometry, III, Springer-Verlag, Berlin, 2006.Google Scholar
[2] Blackadar, B. and Handelman, D., Dimension functions and traces on C*-algebras. J. Funct. Anal. 45(1982), no. 3, 297340. http://dx.doi.org/10.1016/0022-1236(82)90009-X Google Scholar
[3] Blackadar, B. and Kumjian, A., Skew products of relations and the structure of simple C*-algebras. Math. Z. 189(1985), no. 1, 5563. http://dx.doi.org/10.1007/BF01246943 Google Scholar
[4] Brown, L. G., Stable isomorphism of hereditary subalgebras of C*-algebras. Pacific J. Math. 71(1977), no. 2, 335348.Google Scholar
[5] Brown, L. G., Green, P., and Rieffel, M. A., Stable isomorphism and strong Morita equivalence of C*-algebras. Pacific J. Math. 71(1977), no. 2, 349363.Google Scholar
[6] Combes, F. and Zettl, H., Order structures, traces and weights on Morita equivalent C*-algebras. Math. Ann. 265(1983), no. 1, 6781. http://dx.doi.org/10.1007/BF01456936 Google Scholar
[7] Connes, A., A factor of type II1 with countable fundamental group. J. Operator Theory 4(1980), no. 1, 151153.Google Scholar
[8] Cuntz, J., Dimension functions on simple C*-algebras. Math. Ann. 233(1978), no. 2, 145153. http://dx.doi.org/10.1007/BF01421922 Google Scholar
[9] Cuntz, J. and Pedersen, G. K., Equivalence and traces on C*-algebras. J. Funct. Anal. 33(1979), no. 2, 135164. http://dx.doi.org/10.1016/0022-1236(79)90108-3 Google Scholar
[10] Elliott, G. A., An invariant for simple C*-algebras. Canadian Mathematical Society. 19451995, Vol. 3, Canadian Math. Soc., Ottawa, ON, 1996, pp. 6190.Google Scholar
[11] Elliott, G. A. and Villadsen, J., Perforated ordered K0-groups. Canad. J. Math. 52(2000), no. 6, 11641191. http://dx.doi.org/10.4153/CJM-2000-049-9 Google Scholar
[12] Frank, M. and Larson, D., A module frame concept for Hilbert C*-modules. In: The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999), Contemp. Math., 247, American Mathematical Society, Providence, RI, 1999, pp. 207233.Google Scholar
[13] Frank, M. and Larson, D., Frames in Hilbert C*-modules and C*-algebras. J. Operator Theory 48(2002), no. 2, 273314.Google Scholar
[14] Izumi, M., Kajiwara, T., and Watatani, Y., KMS states and branched points. Ergodic Theory Dynam. Systems 27(2007), no. 6, 18871918.Google Scholar
[15] Jacelon, B., A simple self-absorbing, stably projectionless C*-algebra. arxiv:1006.5397v1Google Scholar
[16] Kajiwara, T., Pinzari, C., and Watatani, Y., Ideal structure and simplicity of the C*-algebras generated by Hilbert bimodules. J. Funct. Anal. 159(1998), no. 2, 295322. http://dx.doi.org/10.1006/jfan.1998.3306 Google Scholar
[17] Kajiwara, T., Jones index theory for Hilbert C*-bimodules and its equivalence with conjugation theory. J. Funct. Anal. 215(2004), no. 1, 149. http://dx.doi.org/10.1016/j.jfa.2003.09.008 Google Scholar
[18] Kajiwara, T. and Watatani, Y., Jones index theory by Hilbert C*-bimodules and K-theory. Trans. Amer. Math. Soc. 352(2000), no. 8, 34293472. http://dx.doi.org/10.1090/S0002-9947-00-02392-8 Google Scholar
[19] Kasparov, G. G., Hilbert C*-modules: theorems of Stinespring and Voiculescu. J. Operator Theory 4(1980), no. 1, 133150.Google Scholar
[20] Kishimoto, A. and Kumjian, A., Simple stably projectionless C*-algebras arising as crossed products. Canad. J. Math. 48(1996), no. 5, 980996. http://dx.doi.org/10.4153/CJM-1996-051-0 Google Scholar
[21] Kishimoto, A. and Kumjian, A., Crossed products of Cuntz algebras by quasi-free automorphisms. In: Operator algebras and their applications (Waterloo, ON, 1994/1995), Fields Inst. Commun., 13, American Mathematical Society, Providence, RI, 1997, pp. 173192.Google Scholar
[22] Kodaka, K., Full projections, equivalence bimodules and automorphisms of stable algebras of unital C*-algebras. Operator Theory, J., 37(1997), no. 2, 357369.Google Scholar
[23] Kodaka, K., Picard groups of irrational rotation C*-algebras. J. London Math. Soc. (2) 56(1997), no. 1, 179188. http://dx.doi.org/10.1112/S0024610797005243 Google Scholar
[24] Kodaka, K., Projections inducing automorphisms of stable UHF-algebras. Glasg. Math. J. 41(1999), no. 3, 345354. http://dx.doi.org/10.1017/S0017089599000336 Google Scholar
[25] Laca, M. and Neshveyev, S., KMS states of quasi-free dynamics on Pimsner algebras. J. Funct. Anal. 211(2004), no. 2, 457482. http://dx.doi.org/10.1016/j.jfa.2003.08.008 Google Scholar
[26] Lance, E. C., Hilbert C*-modules. A toolkit for operator algebraists. London Mathematical Society Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995.Google Scholar
[27] Manuilov, V. M. and Troitsky, E. V., Hilbert C*-modules. Translations of Mathematical Monographs, 226, American Mathematical Society, Providence, RI, 2005.Google Scholar
[28] Murray, F. J. and von Neumann, J., On rings of operators. IV. Ann. of Math. 44(1943), 716808. http://dx.doi.org/10.2307/1969107 Google Scholar
[29] Nawata, N. and Watatani, Y., Fundamental group of simple C*-algebras with unique trace. Adv. Math. 225(2010), no. 1, 307318. http://dx.doi.org/10.1016/j.aim.2010.02.019 Google Scholar
[30] Nawata, N. and Watatani, Y., Fundamental group of simple C*-algebras with unique trace II. J. Funct. Anal. 260(2011), no. 2, 428435. http://dx.doi.org/10.1016/j.jfa.2010.09.014 Google Scholar
[31] Pedersen, G. K., Measure theory for C-algebras. III. Math. Scand. 25(1969), 7193.Google Scholar
[32] Pedersen, G. K., C*-Algebras and their automorphism groups. London Mathematical Society Monographs, 14, Academic Press, London-New York, 1979.Google Scholar
[33] Pinzari, C., Watatani, Y., and Yonetani, K., KMS states, entropy and the variational principle in full C*-dynamical systems. Comm. Math. Phys. 213(2000), no. 2, 331379. http://dx.doi.org/10.1007/s002200000244 Google Scholar
[34] Popa, S., Strong rigidity of II1 factors arising from malleable actions of w-rigid groups. I. Invent. Math. 165(2006), no. 2, 369408. http://dx.doi.org/10.1007/s00222-006-0501-4 Google Scholar
[35] Popa, S. and Vaes, S., Actions of F1 whose II1 factors and orbit equivalence relations have prescribed fundamental group. J. Amer. Math. Soc. 23(2010), no. 2, 383403. http://dx.doi.org/10.1090/S0894-0347-09-00644-4 Google Scholar
[36] Řadulescu, F., The fundamental group of the von Neumann algebra of a free group with infinitely many generators is R_ +. J. Amer. Math. Soc. 5(1992), no. 3, 517532.Google Scholar
[37] Razak, S., On the classification of simple stably projectionless C*-algebras. Canad. J. Math. 54(2002), no. 1, 138224. http://dx.doi.org/10.4153/CJM-2002-006-7 Google Scholar
[38] Raeburn, I. and D. P.Williams, Morita equivalence and continuous-trace C*-algebras. Mathematical Surveys and Monographs, 60, American Mathematical Society, Providence, RI, 1998.Google Scholar
[39] Rieffel, M. A., Morita equivalence for operator algebras. In: Operator algebras and applications, Part I (Kingston, Ont., 1980), Proc. Sympos. Pure Math., 38, American Mathematical Society, Providence, RI, 1982, pp. 285298.Google Scholar
[40] Tsang, K.-W., On the positive tracial cones of simple stably projectionless C*-algebras. J. Funct. Anal. 227(2005), no. 1, 188199. http://dx.doi.org/10.1016/j.jfa.2005.01.007 Google Scholar
[41] Voiculescu, D., Circular and semicircular systems and free product factors. In: Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), Progr. Math. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 4560.Google Scholar
[42] Watatani, Y., Index for C*-subalgebras. Mem. Amer. Math. Soc. 83(1990), no. 424.Google Scholar