No CrossRef data available.
Article contents
Free Multivariate w*-Semicrossed Products: Reflexivity and the Bicommutant Property
Published online by Cambridge University Press: 20 November 2018
Abstract
We study ${{\text{w}}^{*}}$-semicrossed products over actions of the free semigroup and the free abelian semigroup on (possibly non-selfadjoint) ${{\text{w}}^{*}}$-closed algebras. We show that they are reflexive when the dynamics are implemented by uniformly bounded families of invertible row operators. Combining with results of Helmer, we derive that ${{\text{w}}^{*}}$-semicrossed products of factors (on a separableHilbert space) are reflexive. Furthermore, we show that ${{\text{w}}^{*}}$-semicrossed products of automorphic actions on maximal abelian self adjoint algebras are reflexive. In all cases we prove that the ${{\text{w}}^{*}}$-semicrossed products have the bicommutant property if and only if the ambient algebra of the dynamics does also.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2018