Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T10:25:34.184Z Has data issue: false hasContentIssue false

The Fourier Coefficients of the ModularFunction λ(τ)

Published online by Cambridge University Press:  20 November 2018

William H. Simons*
Affiliation:
The University of British Columbia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In [3], H. Rademacher obtained a convergent series for the Fourier coefficients of the modular invariant J(τ). He found that in the expansion

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1952

References

1. Davenport, H.,On certain exponential sums, J. Reine Angew. Math., Bd. 169 (1933), 158176.Google Scholar
2. Estermann, T., Vereinfachter Beweis ein.es Satz von Kloosterman, Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universität, Bd. 7 (1939), 82-98, especially 94.Google Scholar
3. Rademacher, H., The Fourier coefficients of the modular invariant J(T), Amer. J. Math., vol. 60 (1938), 501512.Google Scholar
4. Salie, H., Zur Abschatzung der Fourierkoeffizienten ganzer Modulformen, Math. Z., Bd. 36 (1933), 263278.Google Scholar
5. Tannery, J. and Molk, J., Théorie des fonctions elliptiques, Tome II (Paris, 1896), 290.Google Scholar
6. Watson, G. N., Theory of Bessel functions (Cambridge, 1922), 181.Google Scholar