Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T07:27:47.580Z Has data issue: false hasContentIssue false

Finite Linear Groups of Degree Six

Published online by Cambridge University Press:  20 November 2018

J. H. Lindsey II*
Affiliation:
Northern Illinois University, Dekalb, Illinois
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we classify finite groups G with a faithful, quasiprimitive (see Notation), unimodular representation X with character χ of degree six over the complex number field. There are three gaps in the proof which are filled in by [16; 17]. These gaps concern existence and uniqueness of simple, projective, complex linear groups of order 604800, |LF(3, 4)|, and |PSL4(3)|. By [19], X is a tensor product of a 2-dimensional and a 3-dimensional group, or a subgroup thereof, or X corresponds to a projective representation of a simple group, possibly extended by some automorphisms. The tensor product case is discussed in section 10. Otherwise, we assume that G/Z(G) is simple. We discuss which automorphisms of G/Z(G) extend the representation X (that is, lift to the central extension G and fix the character corresponding to X) just after we find X(G).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1971

Footnotes

The author wishes to thank Professor Brauer for his help and encouragement, and for suggesting many of the techniques.

References

1. Blichfeldt, H. F., Finite collineation groups (University of Chicago Press, Chicago, 1917).Google Scholar
2. Brauer, R., On the connection between the ordinary and modular characters of groups of finite order, Ann. of Math. 42 (1941), 926935.Google Scholar
3. Brauer, R., Investigations on group characters, Ann. of Math. 42 (1941), 936958.Google Scholar
4. Brauer, R., On groups whose order contains a prime number to the first power. I, II, Amer. J. Math. 64 (1942), 401-420, 421440.Google Scholar
5. Brauer, R., Uber endliche lineare Gruppen von Primzahlgrad, Math. Ann. 169 (1967), 7396.Google Scholar
6. Brauer, R., On simple groups of order 5-3a * 2b (Dept. Math, mimeographed notes, Harvard University, 1967).Google Scholar
7. Brauer, R., On a theorem of Burnside, Illinois J. Math. II (1967), 349352.Google Scholar
8. Brauer, R. and Leonard, H. S., Jr., Onfinite groups with an abelian Sylow group, Can. J. Math. 14 (1962), 436450.Google Scholar
9. Brauer, R. and Tuan, H. F., On simple groups of finite order. I, Bull. Amer. Math. Soc. 51 (1945), 756766.Google Scholar
10. Curtis, C. W. and Reiner, I., Representation theory of finite groups and associative algebras (J. Wiley and Sons, New York, 1962).Google Scholar
11. Feit, W., Groups which have a faithful representation of degree less than p-1, Trans. Amer. Math. Soc. 112 (1934), 287303.Google Scholar
12. Feit, W. and Thompson, J. G., Groups which have a faithful representation of degree less than (p-l/2)(sic), Pacific J. Math. 11 (1961), 12571262.Google Scholar
13. Green, J. A., Blocks of modular representations, Math. Z. 79 (1962), 109115.Google Scholar
14. Hall, M., The theory of groups (MacMillan, New York, 1959).Google Scholar
15. Hall, M. and Wales, D., The simple group of order 604800, J. Algebra 9 (1968), 417450.Google Scholar
16. Lindsey, J. H. II, On a six-dimensional projective representation of the Hall-Janko group, Pacific J. Math. 35 (1970), 175186.Google Scholar
17. Lindsey, J. H. II, On a six dimensional projective representation of PSU4(3), Pacific J. Math. 36 (1971), 407425.Google Scholar
18. Lindsey, J. H. II, A generalization of Feit's theorem, Trans. Amer. Math. Soc. 155 (1971), 6575.Google Scholar
19. Lindsey, J. H. II, Linear groups with an irreducible, normal, rank two p-subgroup (to appear).Google Scholar
20. Mitchell, H., Determination of all primitive collineation groups in more than four variables which contain homologies, Amer. J. Math. 36 (1914), 112.Google Scholar
21. Schur, I., Uber eine Klasse von endlichen Gruppen linearer Substitutionen, Sitzber. Preuss. Akad. Wiss. (1905), 7791.Google Scholar
22. Schur, I., Untersuchungen uber die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. fur Math. 132 (1907), 85137.Google Scholar
23. Schur, I., Uber die Darstellung die symmetrischen lineare Substitutionen, J. fur Math. 139 (1911), 155250.Google Scholar
24. Suzuki, M., Finite groups in which the centralizer of any element of order 2 is 2-closed, Ann. of Math. 82 (1965), 191212.Google Scholar
25. Tuan, H. F., On groups whose orders contain a prime to the first power, Ann. of Math. 45 (1944), 110140.Google Scholar
26. van der Waerden, B. L., Gruppen von linearen Transformationen, Ergebnisse der Mathematik und ihrer Grenzgebiete (Chelsea, New York).CrossRefGoogle Scholar
27. Wales, D., Finite linear groups of prime degree, Can. J. Math. 21 (1969), 10251041.Google Scholar
28. Wales, D., Finite linear groups of degree seven. I, Can. J. Math. 21 (1969), 10421056.Google Scholar
29. Wales, D., Finite linear groups of degree seven. II, Pacific J. Math. 34 (1970), 207235.Google Scholar
30. Zassenhaus, H., Neuer Beweis der Endlichkeit der Klassenzahl bel unimodularer Aquivalenz endlicher ganzzahliger Substitutions gruppen, Abhandl. math. Seminar Hamburg Univ. 12 (1938), 276288.Google Scholar