Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T06:17:14.310Z Has data issue: false hasContentIssue false

Factorization of Analytic Functions with Values in Non-Commutative L1-spaces and Applications

Published online by Cambridge University Press:  20 November 2018

Uffe Haagerup
Affiliation:
Odense University, Odense, Denmark
Gilles Pisier
Affiliation:
Université Paris VI, Paris, France
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let X be a Banach space such that X* is a von Neumann algebra. We prove that X has the analytic Radon-Nikodym property (in short: ARNP). More precisely we show that for any function ƒ in H1(X) we have This implies the ARNP for X as well as for all the Banach spaces which are finitely representable in X. The proof uses a C*-algebraic formulation of the classical factorization theorems for matrix valued H1-functions. As a corollary we prove (for instance) that if AB is a C*-subalgebra of a C*-algebra B, then every operator from A into H extends to an operator from B into H with the same norm. We include some remarks on the ARNP in connection with the complex interpolation method.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1989

References

1. Arveson, W., Ten lecture son operator algebras, CBMS 55 (Amer. Math. Soc, Providence, 1984).Google Scholar
2. Bergh, J.and Löfström, J., Interpolation spaces. An introduction (Springer-Verlag, 1976).Google Scholar
3. Blasco, O.and Pdczyiiski, A., Theorems of Hardy and Paley for vector valued analytic functions and related classes of Banach spaces, Trans. A.M.S. To appear.Google Scholar
4. Bourgain, J., Some remarks on Banach spaces in which martingale difference sequences are unconditional, Arkiv für Math. 21 (1983), 163168.Google Scholar
5. Bourgain, J.and Davis, W. J., Martingale transforms and complex uniform convexity, Trans. A.M.S. 294 (1986), 501515.Google Scholar
6. Shangquan, Bu, Quelques remarques sur le propriété de Radon Nikodym analytique, Comptes Rendus Acad. Sci. Paris 306 (1988), 757760.Google Scholar
7. Bukhvalov, A.and Danilevitch, A., Boundary properties of analytic and harmonic functions with values in a Banach spaces, Mat. Zametki 31 (1982), 203214. English translation: Mat. Notes 31 (1982), 104110.Google Scholar
8. Burkholder, D., A geometric characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. of Prob. 9 (1981), 9971011.Google Scholar
9. Chatterji, S., Martingale convergence and the Radon Nikodym theorem in Banach spaces, Math. Scand. 22 (1968), 2141.Google Scholar
10. Davis, W. J., Garling, D. J. H. and N. Tomczak-Jaegermann, The complex convexity of quasinormed linear spaces, J. Funct. Anal. 55 (1984), 110150.Google Scholar
11. Devinatz, A., The factorization of operator valued functions, Ann. of Maths. 73 (1961), 458–95.Google Scholar
12. Diestel, J.and Uhl, J., Vector measures, Amer. Math. Soc. (1977).Google Scholar
13. Dowling, P., Representable operators and the analytic Radon-Nikodym property in Banach spaces, Proc. Royal Irish Acad. 85A (1985), 143150.Google Scholar
14. Edgar, G., Analytic martingale convergence, Journal Funct. Anal. 69 (1986), 268280.Google Scholar
15. Edgar, G., Complex martingale convergence, Lecture Notes in Mathematics 1166 (Springer Verlag, 1985), 3859.Google Scholar
16. Garling, D. J. H., On martingales with values in a complex Banach space, Proc. Cambridge Phil. Soc. To appear.Google Scholar
17. Girardeau, J. P., Sur l’interpolation entre un espace localement convexe et son dual, Rev. Fac. Ci. Univ. Lisboa. A Mag. 9 (1964-1965), 165186.Google Scholar
18. Ghoussoub, N., Lindenstrauss, J.and Maurey, B., Analytic martingales and plurisubharmonic barriers in complex Banach spaces, in preparation.Google Scholar
19. Ghoussoub, N.and Maurey, B., Plurisubharmonic martingales and barriers in compex quasi- Banach spaces, in preparation.Google Scholar
20. Gohberg, I. C. and Krein, M. G., Theory of Volterra operators in Hilbert space and its applications, Translations of Math. Monograph 24 (Amer. Math. Soc, Providence., R.I., 1970).Google Scholar
21. Helson, H.and Lowdenslager, D., Prediction theory and Fourier series in several variables, Acta Math. 99 (1958), 165202.Google Scholar
22. Hoffman, K., Banach spaces of analytic functions (Prentice Hall, 1962).Google Scholar
23. Kadison, R.and Ringrose, J., Fundamentals of the theory of operator algebras, vols. I and II (Academic Press, New York, 1983 and 1986).Google Scholar
24. Kalton, N., Differentiability properties of vector- valued functions, Springer Lecture Notes in Maths. 7227 (1985), 140181.Google Scholar
25. Kosaki, H., Applications of the complex interpolation method to a von Neumann algebra: non commutative Lp-spaces, J. Funct. Anal. 56 (1984), 2978.Google Scholar
26. Kwapien, S.and Pelczyński, A., The main triangle projecttion in matrix spaces and its applications, Studia Math. 34 (1970), 4367.Google Scholar
27. Lax, P., Translation invariant spaces, Acta Math. 101 (1959), 163178.Google Scholar
28. Lindenstrauss, J.and Tzafriri, L., Classical Banach spaces I (Springer Verlag, 1977).Google Scholar
29. Masani, P.and Wiener, N., The prediction theory of multivariate stochastic processes, I and II, Acta Math. 98 (1957), 111150 and Acta Math. 99 (1958), 93137.Google Scholar
30. Muhly, P. S., Fefferman spaces and C*-algebras, preprint (1988).Google Scholar
31. Neveu, J., Martingales à temps discret, Masson, Paris (1972), also North-Holland 97 and 98 (1957 and 1958).Google Scholar
32. Page, L., Bounded and compact vectorial Hankel operators, Trans. Amer. Math. Soc. 750 (1970), 529540.Google Scholar
33. Parrott, S., On a quotient norm and the Sz-Nagy Foias lifting theorem, Journal of Funct. Anal. 30 (1978), 311328.Google Scholar
34. Pedersen, G. C*-algebras and their automorphism groups (Academic Press, London, 1979).Google Scholar
35. Pisier, G., Factorization of operators through Lp∞ and Lpi and non-commutative generalizations, Math. Ann. 276 (1986), 105136.Google Scholar
36. Power, S., Analysis in nest algebras, in Surveys of recent results in operator theory, vol II. (Pitman-Longman), to appear.Google Scholar
37. Sarason, D., Generalized interpolation in H∞, Trans. Amer. Math. Soc. 727 (1967), 179203.Google Scholar
38. Shields, A. An analogue of a Hardy-Littlewood-Fejer inequality for upper triangular trace class operators, Math. Z. 182 (1983), 473-84.Google Scholar
39. Sz.-Nagy, B. and Foias, C., Harmonic analysis of operators on Hilbert space (Akadémiai Kiadó, Budapest, 1970).Google Scholar
40. Takesaki, M., Theory of operator algebras I (Springer Verlag, New York, 1979).Google Scholar
41. Terp, M., Interpolation spaces between a von Neumann algebra and its predual, J. Operator Theory 8 (1982), 327360.Google Scholar
42. Xu, Q., Inégalités pour les martingales de Hardy et renormage des espaces quasi normés, C. Rendus Acad. Sci. Paris 306 (1988), 601604.Google Scholar