Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T17:47:01.840Z Has data issue: false hasContentIssue false

Extension Property and Universal Sets

Published online by Cambridge University Press:  24 February 2020

Łukasz Kosiński
Affiliation:
Institute of Mathematics, Faculty of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Poland e-mail: [email protected]@uj.edu.pl
Włodzimierz Zwonek
Affiliation:
Institute of Mathematics, Faculty of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Poland e-mail: [email protected]@uj.edu.pl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Motivated by works on extension sets in standard domains, we introduce a notion of the Carathéodory set that seems better suited for the methods used in proofs of results on characterization of extension sets. A special stress is put on a class of two-dimensional submanifolds in the tridisc that not only turns out to be Carathéodory but also provides examples of two-dimensional domains for which the celebrated Lempert Theorem holds. Additionally, a recently introduced notion of universal sets for the Carathéodory extremal problem is studied and new results on domains admitting (no) finite universal sets are given.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© Canadian Mathematical Society 2020

Footnotes

The first author is partially supported by NCN grant SONATA BIS no. 2017/26/E/ST1/00723. The second author is partially supported by the OPUS grant no. 2015/17/B/ST1/00996 of the National Science Centre, Poland.

References

Abouhajar, A. A., White, M. C., and Young, N. J., A Schwarz lemma for a domain related to mu-synthesis. J. Geom. Anal. 17(2007), 717750. https://doi.org/10.1007/BF02937435 CrossRefGoogle Scholar
Agler, J., Lykova, Z., and Young, N. J., Characterizations of some domains via Carathéodory extremals . J. Geom. Anal. 29(2019), 30393054. https://doi.org/10.1007/s12220-018-0059-6 CrossRefGoogle Scholar
Agler, J., Lykova, Z., and Young, N. J., Geodesics, retracts, and the norm-preserving extension property in the symmetrized bidisc . Mem. Amer. Math. Soc. 258(2019), no. 1242. https://doi.org/10.1090/memo/1242 Google Scholar
Agler, J. and McCarthy, J. E., Norm preserving extensions of holomorphic functions from subvarieties of the bidisk . Ann. of Math. 157(2003), 289312. https://doi.org/10.4007/annals.2003.157.289 CrossRefGoogle Scholar
Agler, J. and Young, N. J., The hyperbolic geometry of the symmetrized bidisc . J. Geom. Anal. 14(2004), no. 3, 375403. https://doi.org/10.1007/BF02922097 CrossRefGoogle Scholar
Bhattacharyya, T. and Sau, H., Holomorphic functions on the symmetrized bidisk–realization, interpolation and extension . J. Funct. Anal. 274(2018), no. 2, 504524. https://doi.org/10.1016/j.jfa.2017.09.013 CrossRefGoogle Scholar
Costara, C., The symmetrized bidisc and Lempert’s theorem . Bull. Lond. Math. Soc. 36(2004), no. 5, 656662. https://doi.org/10.1112/S0024609304003200 CrossRefGoogle Scholar
Edigarian, A., Kosiński, Ł., and Zwonek, W., The Lempert theorem and the tetrablock . J. Geom. Anal. 23(2013), no. 4, 18181831. https://doi.org/10.1007/s12220-012-9308-2 CrossRefGoogle Scholar
Fisher, S. D., On Schwarz’s lemma and inner functions . Trans. Amer. Math. Soc. 138(1969), 229240. https://doi.org/10.2307/1994911 Google Scholar
Guo, K., Huang, H., and Wang, K., Retracts in polydisk and analytic varieties with the H-extension property . J. Geom. Anal. 18(2008), 148171. https://doi.org/10.1007/s12220-007-9005-8 CrossRefGoogle Scholar
Heath, L. F. and Suffridge, T. J., Holomorphic retracts in complex n-space . Illinois J. Math. 25(1981), 125135.Google Scholar
Jarnicki, M. and Pflug, P., Invariant distances and metrics in complex analysis . Second extended ed., De Gruyter Expositions in Mathematics, 9, Walter de Gruyter GmbH & Co. KG, Berlin, 2013.Google Scholar
Kosiński, Ł., Three-point Nevanlinna–Pick problem in the polydisc . Proc. Lond. Math. Soc. 111(2015), 887910. https://doi.org/10.1112/plms/pdv045 CrossRefGoogle Scholar
Kosiński, Ł. and McCarthy, J. E., Extensions of bounded holomorphic functions on the tridisc . Rev. Mat. Iberoam. (2019).CrossRefGoogle Scholar
Kosiński, Ł. and McCarthy, J. E., Norm preserving extensions of bounded holomorphic functions . Trans. Amer. Math. Soc. 371(2019), 72437257. https://doi.org/10.1090/tran/7597 CrossRefGoogle Scholar
Kosiński, Ł. and Zwonek, W., Nevanlinna–Pick problem and uniqueness of left inverses in convex domains, symmetrized bidisc and tetrablock . J. Geom. Anal. 26(2016), 18631890. https://doi.org/10.1007/s12220-015-9611-9 CrossRefGoogle Scholar
Kosiński, Ł. and Zwonek, W., Nevanlinna–Pick interpolation problem in the ball . Trans. Amer. Math. Soc. 370(2018), 39313947. https://doi.org/10.1090/tran/7063 CrossRefGoogle Scholar
Lempert, L., La métrique de Kobayashi et la représentation des domaines sur la boule . Bull. Soc. Math. France 109(1981), no. 4, 427474.CrossRefGoogle Scholar
Lempert, L., Holomorphic retracts and intrinsic metrics in convex domains . Anal. Math. 8(1982), no. 4, 257261. https://doi.org/10.1007/BF02201775 CrossRefGoogle Scholar
Maciaszek, K., On polynomial extension property in N-disc . Complex Anal. Oper. Theory 13(2019), 27712780. https://doi.org/10.1007/s11785-019-00912-3 CrossRefGoogle Scholar
Pflug, P. and Zwonek, W., Exhausting domains of the symmetrized bidisc . Ark. Mat. 50(2012), 397402. https://doi.org/10.1007/s11512-011-0153-5 CrossRefGoogle Scholar
Rudin, W., Function theory in polydiscs. W. A. Benjamin, New York-Amsterdam, 1969.Google Scholar