Published online by Cambridge University Press: 24 February 2020
Motivated by works on extension sets in standard domains, we introduce a notion of the Carathéodory set that seems better suited for the methods used in proofs of results on characterization of extension sets. A special stress is put on a class of two-dimensional submanifolds in the tridisc that not only turns out to be Carathéodory but also provides examples of two-dimensional domains for which the celebrated Lempert Theorem holds. Additionally, a recently introduced notion of universal sets for the Carathéodory extremal problem is studied and new results on domains admitting (no) finite universal sets are given.
The first author is partially supported by NCN grant SONATA BIS no. 2017/26/E/ST1/00723. The second author is partially supported by the OPUS grant no. 2015/17/B/ST1/00996 of the National Science Centre, Poland.