Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T15:28:38.931Z Has data issue: false hasContentIssue false

Explicit Formulas for the Coefficients of α-Convex Functions, α ≧ 0

Published online by Cambridge University Press:  20 November 2018

Pavel G. Todorov*
Affiliation:
20 Lenin Avenue, Plovdiv, Bulgaria
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let the function

1

be analytic in the unit disk Δ = {z│ │z│ ≤ 1), with

there, and let α be a real number. Then f(z) is said to be α-convex in Δ if and only if the inequality

holds in Δ. The class of α-convex functions was introduced in [8] and was studied in detail in the series [5]–[10], where in particular it is shown that α-convex functions are univalent and starlike for all α (−∞≦ α ≦ + ∞), that is, the inequality

holds in Δ.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1987

References

1. Bazilevič, I. E., On a case of integrability in quadrature of the Löwner-Kufarev equation. Mat. Sb. 37 (1955), 471476 (Russian).Google Scholar
2. Goodman, A. W., Coefficients for the area theorem, Proc. Amer. Math. Soc. 33 (1972), 438444.Google Scholar
3. Kulshrestha, P. K., Coefficients for alpha-convex univalent functions. Bull. Amer. Math. Soc. 80 (1974), 341342.Google Scholar
4. Kulshrestha, P. K., Coefficient problem for alpha-convex univalent functions, Arch. Rat. Mech. and Anal. 54 (1974), 205211.Google Scholar
5. Miller, S. S., Mocanu, P. T. and Reade, M. O., All α-convex functions are starlike, Rev. Roumaine Math. Pures et Appl. 17 (1972), 13951397.Google Scholar
6. Miller, S. S., Mocanu, P. T. and Reade, M. O., All α-convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37 (1973), 553554.Google Scholar
7. Miller, S. S., Mocanu, P. T. and Reade, M. O., Bazilevič functions and generalized convexity, Rev. Roumaine Math. Pures et Appl. 79 (1974), 213224.Google Scholar
8. Moeanu, P. T., Une propriété de convexité dans la théorie de la representation conforme, Mathematica (Cluj), 11 (1969), 127133.Google Scholar
9. Mocanu, P. T. and Reade, M. O., On generalized convexity in conformal mappings, Rev. Roumaine Math. Pures et Appl. 76 (1971), 15411544.Google Scholar
10. Mocanu, P. T. and Reade, M. O., The order of starlikeness of certain univalent functions, Notices Amer. Math. Soc. 18 (1971), 815.Google Scholar
11. Pinchuk, B., On starlike and convex functions of order α, Duke Math. J. 35 (1968), 721734.Google Scholar
12. Robertson, M.S., On the theory of univalent functions, Ann. of Math. 37 (1936), 374408.Google Scholar
13. Schild, A., On starlike functions of order α, Amer. J. Math. 87 (1965), 6570.Google Scholar
14. Todorov, P. G., New explicit formulas for the coefficients of p-symmetric functions, Proc. Amer. Math. Soc. 77 (1979), 8186.Google Scholar