Published online by Cambridge University Press: 20 November 2018
We study adjacency of equisingularity types of planar complex curve singularities in terms of their Enriques diagrams. The goal is, given two equisingularity types, to determine whether one of themis adjacent to the other. For linear adjacency a complete answer is obtained, whereas for arbitrary (analytic) adjacency a necessary condition and a sufficient condition are proved. We also obtain new examples of exceptional deformations, i.e, singular curves of type ${\mathcal{D}}'$ that can be deformed to a curve of type $\mathcal{D}$ without ${\mathcal{D}}'$ being adjacent to $\mathcal{D}$.