No CrossRef data available.
Published online by Cambridge University Press: 14 January 2025
Let ${\mathcal {E}}$ be a complex elliptic curve and S be a non-empty finite subset of ${\mathcal {E}}$. We show that the functions $\tilde {\Gamma }$ introduced in [BDDT] out of string theory motivations give rise to a basis (as a vector space) of the minimal algebra $A_{{\mathcal {E}}{\smallsetminus } S}$ of holomorphic multivalued functions on ${\mathcal {E}}{\smallsetminus } S$ which is stable under integration, introduced in [EZ]; this basis is alternative to the basis of $A_{{\mathcal {E}}{\smallsetminus } S}$ constructed in loc. cit. using elliptic analogs of the hyperlogarithm functions.