No CrossRef data available.
Article contents
Données endoscopiques d’un groupe réductif connexe : applications d’une construction de Langlands
Published online by Cambridge University Press: 15 May 2020
Résumé
Soient $F$ un corps global, et $G$ un groupe réductif connexe défini sur $F$ . On prouve que si deux données endoscopiques de $G$ sont équivalentes en presque toute place de $F$ , alors elles sont équivalentes. Le résultat est encore vrai pour l’endoscopie (ordinaire) avec caractère. On donne aussi, pour $F$ global ou local et $G$ quasi-simple simplement connexe, une description des données endoscopiques elliptiques de $G$ .
Abstract
Let $F$ be a global field, and $G$ a connected reductive group defined over $F$ . We prove that two endoscopic data of $G$ which are equivalent almost everywhere, are equivalent. The result remains true for (non-twisted) endoscopy with character. We also give, for $F$ global or local and $G$ quasi-simple simply connected, a description of the elliptic endoscopic data of $G$ .
- Type
- Article
- Information
- Copyright
- © Canadian Mathematical Society 2020