Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T16:53:19.320Z Has data issue: false hasContentIssue false

Diffusive convective elliptic problem in variable exponent space and measure data

Published online by Cambridge University Press:  23 January 2025

Safimba Soma*
Affiliation:
Laboratoire de Mathématiques et d’Informatique (LA.M.I), UFR, Sciences Exactes et Appliquées, Université Joseph KI-ZERBO, 03 BP 7021 03 Ouagadougou, Burkina Faso
Ibrahime Konaté
Affiliation:
Laboratoire de Science et technologie (LaST), UFR, Sciences et Technologies, Université Thomas SANKARA, 12 BP 417 12 Ouagadougou, Burkina Faso e-mail: [email protected]
Adama Kaboré
Affiliation:
Laboratoire de Mathématiques et d’Informatique (LA.M.I), Institut des Sciences et de Technologie, Ecole Normale Superieure, 01 BP 1757 01 Ouagadougou, Burkina Faso e-mail: [email protected]

Abstract

In this article, we study a class of convective diffusive elliptic problem with Dirichlet boundary condition and measure data in variable exponent spaces. We begin by introducing an approximate problem via a truncation approach and Yosida’s regularization. Then, we apply the technique of maximal monotone operators in Banach spaces to obtain a sequence of approximate solutions. Finally, we pass to the limit and prove that this sequence of solutions converges to at least one weak or entropy solution of the original problem. Furthermore, under some additional assumptions on the convective diffusive term, we prove the uniqueness of the entropy solution.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antontsev, S. and Rodrigues, J. F., On stationary thermorheological viscous flows . Ann. Univ. Ferrara Sez. VII Sci. Mat. 52(2006), 1936.CrossRefGoogle Scholar
Benboubker, M. B., Chrayteh, H., Moumni, M. E., and Hjaji, H., Entropy and renormalized solutions for nonlinear elliptic problem involving variable exponent and measure data . Acta Math. Sin. (Engl. Ser.) 31(2015), 151169.CrossRefGoogle Scholar
Bénilan, P., Boccardo, L., Gallouet, T., Gariepy, R., Pierre, M., and Vázquez, J. L., An ${L}^1-$ theory of existence and uniqueness of solutions of nonlinear elliptic equations . Ann. Sc. Norm. Sup. Pisa, Cl. Sci. 22(1995), 241272.Google Scholar
Boccardo, L. and Gallouet, T., Nonlinear elliptic equations with right hand side measures . Comm Partial Differ. Equ. 17(1992), 641655.CrossRefGoogle Scholar
Boccardo, L., Gallouet, T., and Orsina, L., Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data . Ann. Inst. Henri Poincaré, Anal. Non Linéaire. 13(1996), 539551.CrossRefGoogle Scholar
Bonzi, B. K. and Ouaro, S., Entropy solutions for a doubly nonlinear elliptic problem with variable exponent . J. Math. Anal. Appl. 370(2010), 392405.CrossRefGoogle Scholar
Brezis, H., Opérateurs maximaux monotones et semigroupes de contraction dans les espaces de Hilbert, North Holland, Amsterdam, 1973.Google Scholar
Chen, Y., Levine, S., and Rao, M., Variable exponent, linear growth functionals in image restoration . SIAM J. Appl. Math. 66(2006), 13831406.CrossRefGoogle Scholar
Dal Maso, G., Murat, F., Orsina, L., and Prignet, A., Renormalized solutions of elliptic equations with general measure data . Ann. Scuola Norm. Sup. Pisa. Cl. Sci. 28(1999), 741808.Google Scholar
Diening, L., Theoretical and numerical results for electrorheological fluids. PhD. thesis, University of Frieburg, Germany, 2002.Google Scholar
Dolzmann, G., Hungerbehler, N., and Muller, S., Non-linear elliptic systems with measure-valued right-hand side . Math Z. 4(1997), 545574.CrossRefGoogle Scholar
Fan, X., Anisotropic variable exponent Sobolev spaces and $\overrightarrow{p}(.)$ -Laplacien equations. Complex variable and elliptic equations . Int. J. 56(2011), 623642.Google Scholar
Fan, X. and Zhao, D., On the spaces ${L}^{p(x)}\left(\varOmega \right)$ and ${W}^{1,p(x)}\left(\varOmega \right)$ . J. Math. Anal. Appl. 263(2001), 424446.CrossRefGoogle Scholar
Harjulehto, P. and Hästö, P., Sobolev inequalities for variable exponents attaining the values 1 and $n$ . Publ. Mat. 52(2008), 347363.CrossRefGoogle Scholar
Ibrango, I. and Ouaro, S., Entropy solutions for anisotropic nonlinear Dirichlet problems . Ann. Univ. Craiova. Mat. Inform. 42(2015), 347364.Google Scholar
Igbida, N., Ouaro, S., and Soma, S., Elliptic problem involving diffuse measures data . J. Differ. Equ. 253(2012), 31593183.CrossRefGoogle Scholar
Konaté, I. and Ouaro, S., Good Radon measure for anisotropic problems with variable exponent . Electron. J. Diff. Equ. 2016(2016), 119.Google Scholar
Konaté, I. and Ouaro, S., Nonlinear multivalued problems with variable exponent and diffuse measure data in anisotropic space . Gulf J. Math. 6(2018), 1330.Google Scholar
Kovacik, O. and Rakosnik, J., On spaces ${L}^{p(x)}$ and ${W}^{1,p(x)}$ . Czech. Math. J. 41(1991), 592618.CrossRefGoogle Scholar
Nassouri, E., Ouaro, S., and Urbain, T., Nonlinear Neumann problems involving $p(x)$ -Laplace operator and measure data . Discuss. Math. Differ. Incl., Control Optim. 39(2019), 181212.CrossRefGoogle Scholar
Igbida, N., Ouaro, S., and Soma, S., Elliptic problem involving diffuse measure data . J. Differ. Equ. 253(2012), 31593183.CrossRefGoogle Scholar
Nyanquini, I., Ouaro, S., and Soma, S., Entropy solution to nonlinear multivalued elliptic problem with variable exponents and measure data . Ann. Univ. Craiova Ser. Mat. Inform. 40(2013), 74198.Google Scholar
Ouaro, S., Ouédraogo, A., and Soma, S., Multivalued homogeneous Neumann problem involving diffuse measure data and variable exponent . Nonlinear Dyn. Syst. Theory 16(2016), 102114.Google Scholar
Pfeiffer, C., Mavroidis, C., Bar-Cohen, Y., and Dolgin, B., Electrorheological fluid based force feedback device . In: Proceeding 1999 SPIE telemanipulator and telepresence technologies VI conference, 3840, Boston, MA, 1999, pp. 8899.Google Scholar
Wang, L., Fan, Y., and Ge, W., Existence and multiplicity of solutions for a Neumann problem involving the $p(.)$ -Laplace operator . Nonlinear Anal. 71(2009), 42594270.CrossRefGoogle Scholar
Wittbold, P. and Zimmermann, A., Existence and uniqueness solutions to nonlinear elliptic equations with variable exponent and ${L}^1$ -data . Nonlinear Anal. Theory, Methods Appl. 72(2010), 29903008.CrossRefGoogle Scholar
Yao, J., Solutions for Neumann boundary value problem involving $p()$ -Laplace operator . Nonlinear Anal. 68(2008), 12711283.CrossRefGoogle Scholar