Published online by Cambridge University Press: 28 May 2024
The local invariants of a meromorphic quadratic differential on a compact Riemann surface are the orders of zeros and poles, and the residues at the poles of even orders. The main result of this paper is that with few exceptions, every pattern of local invariants can be obtained by a quadratic differential on some Riemann surface. The exceptions are completely classified and only occur in genera zero and one. Moreover, in the case of a nonconnected stratum, we show that, with three exceptions in genus one, each configuration of invariants can be realized in each non-hyperelliptic connected component of the stratum. In the hyperelliptic components with two poles the residues at both poles coincide. These results are obtained using the flat metric induced by the differentials. We give an application by bounding the number of disjoint cylinders on a primitive quadratic differential.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.