Article contents
Défaut de semi-stabilité des courbes elliptiques dans le cas non ramifié
Published online by Cambridge University Press: 20 November 2018
Abstract
Let $\overline{{{\mathbb{Q}}_{2}}}$ be an algebraic closure of
${{\mathbb{Q}}_{2}}$ and
$K$ be an unramified finite extension of
${{\mathbb{Q}}_{2}}$ included in
$\overline{{{\mathbb{Q}}_{2}}}$. Let
$E$ be an elliptic curve defined over
$K$ with additive reduction over
$K$, and having an integral modular invariant. Let us denote by
${{K}_{nr}}$ the maximal unramified extension of
$K$ contained in
$\overline{{{\mathbb{Q}}_{2}}}$. There exists a smallest finite extension
$L$ of
${{K}_{nr}}$ over which
$E$ has good reduction. We determine in this paper the degree of the extension
$L/{{K}_{nr}}$.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2004
References
Références
- 1
- Cited by