Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T06:32:22.951Z Has data issue: false hasContentIssue false

The Construction of Perfect and Extreme Forms

Published online by Cambridge University Press:  20 November 2018

P. R. Scott*
Affiliation:
Victoria University of Wellington, New Zealand
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let

be a positive quadratic form of determinant D, and let M be the minimum of f(x) for integral x ≠ 0. Then f(x) assumes the value M for a finite number of integral vectors x = ±mk (k = 1 , … , s) called the minimal vectors.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1966

References

1. Barnes, E. S., The complete enumeration of extreme senary forms, Phil. Trans. Roy. Soc., (A) 249 (1957), 461506 Google Scholar
2. Barnes, E. S., The construction of perfect and extreme forms I and II, Acta Arith., 5 (1958), 5779; 5 (1959), 205-222.Google Scholar
3. Barnes, E. S. and Wall, G. E., Some extreme forms defined in terms of abelian groups, J. Austral. Math. Soc, 1 (1959), 4763.Google Scholar
4. Coxeter, H. S. M., Extreme forms, Can. J. Math., 3 (1951), 391441.Google Scholar
5. Coxeter, H. S. M. and Todd, J. A., An extreme duodenary form, Can. J. Math., 5 (1951), 384392.Google Scholar
6. Korkine, A. and Zolotareff, G., Sur les formes quadratiques positives, Math. Ann., 11 (1877), 242392.Google Scholar
7. Minkowski, H., Diskontinuitätsbereich für arithmetische Äquivalenz, J. Reine Angew. Math., 129 (1905), 220274.Google Scholar
8. Mordell, L. J., Observation on the minimum of a positive quadratic form in eight variables, J. London Math. Soc, 19 (1944), 36.Google Scholar
9. Scott, P. R., On perfect and extreme forms, J. Austral. Math. Soc, 4 (1964), 5677.Google Scholar
10. Voronoi, G., Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Math., 138 (1908), 97178.Google Scholar