Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T05:56:02.573Z Has data issue: false hasContentIssue false

Conjugacy Classes of Maximal Tori in Simple Real Algebraic Groups and Applications

Published online by Cambridge University Press:  20 November 2018

Dragomir Ž. Doković
Affiliation:
Department of Pure Mathematics University of Waterloo Waterloo, Ontario N2L 3G1
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be an almost simple complex algebraic group defined over R, and let G(R) be the group of real points of G. We enumerate the G(R)-conjugacy classes of maximal R-tori of G. Each of these conjugacy classes is also a single G(R)˚-conjugacy class, where G(R)˚ is the identity component of G(R), viewed as a real Lie group. As a consequence we also obtain a new and short proof of the Kostant-Sugiura's theorem on conjugacy classes of Cartan subalgebras in simple real Lie algebras.

A connected real Lie group P is said to be weakly exponential (w.e.) if the image of its exponential map is dense in P. This concept was introduced in [HM] where also the question of identifying all w.e. almost simple real Lie groups was raised. By using a theorem of A. Borel and our classification of maximal R-tori we answer the above question when P is of the form G(R)˚.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1994

References

[Bo] Borel, A., Linear Algebraic Groups, Springer, New York, 1991.Google Scholar
[BT1] Borel, A. and Tits, J., Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27(1965), 55-151.Google Scholar
[BT2] Borel, A., Compléments à làarticle “Groupes réductifs”, Inst. Hautes Études Sci. Publ. Math. 41(1972), 253276.Google Scholar
[Bou] Bourbaki, N., Groupes et algèbres de Lie, Chapitres 4,5,6, Hermann, Paris, 1968.Google Scholar
[Dl] Djoković, D. ž., On the exponential map in classical Lie groups, J. Algebra 64(1980), 76é88.Google Scholar
[D2] Djoković, D. ž., The interior and the exterior of the image of the exponential map in classical Lie groups, J. Algebra 112(1988), 90é109; Corrigendum, 115(1988), 521.Google Scholar
[Dy] Dynkin, E. B., Semisimple subalgebrasof semisimple Lie algebras, Mat. Sb. N.S. (72) 30(1952), 249é362; Amer. Math. Soc. Transi. (2) 6(1957), 111244.Google Scholar
[GG] Goto, M. and Grosshans, F. D., Semisimple Lie Algebras, Dekker, New York, 1978.Google Scholar
[H] Helgason, S., Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.Google Scholar
[He] Helminck, A. G., Tori invariant under an involutorial automorphism, I, Adv. in Math. 85(1991), 138.Google Scholar
[HM] Hofmann, K. H. and Mukherjea, A., On the density of the image of the exponential function, Math. Ann. 234(1978), 263é273.Google Scholar
[K] Kostant, B., Conjugacy of real Cartan subalgebras, Proc. Nat. Acad. Sci. U.S.A. 41(1955), 5760.Google Scholar
[M] Matsumoto, H., Quelques remarques sur les groupes de Lie algébriques réels, J. Math. Soc. Japan 16(1964), 419-446.Google Scholar
[R] Rothschild, L. P., Orbits in a real reductive Lie algebra, Trans. Amer. Math. Soc. 168(1972), 403-21.Google Scholar
[Sa] Satake, I., Classification Theory of Semi-simple Algebraic Groups, Dekker, New York, 1971.Google Scholar
[Se] Selbach, M., Klassifikationstheorie halbeinfacheralgebraischerGruppen, Bonn. Math. Schriften 83(1976).Google Scholar
[Ser] Serre, J.-P., Cohomologie Galoisienne, Lecture Notes in Math. 5, Springer, New York, 1964.Google Scholar
[St] Steinberg, R., Lectures on Chevalley Groups, Yale University, 1967.Google Scholar
[Su] Sugiura, M., Conjugacy classes of Cartan subalgebras in real semisimple Lie algebras, J. Math. Soc. Japan 11(1959), 374-134; Correction, 23(1971), 379-383.Google Scholar
[Tl] Tits, J., Classification of algebraic semisimple groups. In: Proc. Symp. Pure Math., Amer. Math. Soc. 9(1966), 33-62.Google Scholar
[T2] Tits, J., Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen, Lecture Notes in Math. 40, Springer, New York, 1967.Google Scholar
[W] Warner, G., Harmonie Analysis on Semisimple Lie Groups, v. 1, Springer, New York, 1972.Google Scholar