Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T07:50:23.754Z Has data issue: false hasContentIssue false

Congruence-Preserving Isomorphisms of the Translation Group associated with a Translation Plane

Published online by Cambridge University Press:  20 November 2018

F. Radó*
Affiliation:
University of Waterloo, Waterloo, Ontario
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let II, II′ be projective translation planes, their sets of points, l, l′ the improper lines, and T, T′ the corresponding translation groups. T is an Abelian group, simply transitive on . The set of the subgroups Ts = {τ|τT, cen τ = S} for all Sl is called the congruence of II (cen τ = centre of τ). An injective map , where , is said to be a collineation of when and three points in are collinear if and only if their images are collinear; the set of these φ is denoted by and for we write

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1971

References

1. Aczél, J., Collineations on three and on four lines of projective planes over fields, Mathematica 8 (81) (1966), 713.Google Scholar
2. Aczél, J. and Benz, W., Kollineationen auf Drei- und Vierecken in der Desargues s chen projektiven Ebene und Àquivalenz der Dreiecksnomogramme und der Dreigewebe von Loops mit der Isotopie-Isomorphie-Eigenschaft, Aequationes Math. 3 (1969), 8692.Google Scholar
3. Aczél, J. and McKiernan, M. A., On the characterization of plane projective and complex Moebius transformations, Math. Nachr. 38 (1967), 315337.Google Scholar
4. André, J., Über nicht-Des argues s che Ebenen mit transitiver Translationsgruppe, Math. Z. 60 (1954), 156186.Google Scholar
5. Havel, V., On collineations on three and four lines in a projective plane, Aequationes Math. 4 (1970), 5155.Google Scholar
6. Orbán, B., Extension of collineations defined on certain sets of a Desarguesian projective plane, Aequationes Math. 4 (1970), 6571.Google Scholar
7. Pickert, G., Projektive Ebenen, Die Grundlehrender mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Beriicksichtigung der Anwendungsgebiete, Bd. 80 (Springer-Verlag, Berlin-Gôttingen-Heidelberg, 1955).Google Scholar
8. Radó, F., Non-injective collineations on some sets in Desarguesian projective planes and extension of non-commutative valuations, Aequationes Math. 4 (1970), 307321.Google Scholar
9. Rigby, J. F., Collineations on quadrilaterals in projective planes, Mathematica 10 (83) (1968), 369383.Google Scholar