Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T22:11:46.180Z Has data issue: false hasContentIssue false

Comparison of $K$-Theory Galois Module Structure Invariants

Published online by Cambridge University Press:  20 November 2018

T. Chinburg
Affiliation:
Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395, USA
M. Kolster
Affiliation:
Department of Mathematics, McMaster University, Hamilton, ON, L8S 4K1
V. P. Snaith
Affiliation:
Faculty of Mathematical Studies, University of Southampton, Hants SO17 1BJ, England
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that two, apparently different, class-group valued Galois module structure invariants associated to the algebraic $K$-groups of rings of algebraic integers coincide. This comparison result is particularly important in making explicit calculations.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2000

References

[1] Burns, D. and Flach, M., Motivic L-functions and Galois module structure invariants. Math. Ann. 305 (1996), 65102.Google Scholar
[2] Burns, D. and Flach, M., On Galois structure invariants associated to Tate motives. Amer. J. Math. 120 (1998), 13431397.Google Scholar
[3] Bloch, S. and Kato, K., L-functions and Tamagawa numbers of motives. Grothendieck Festschrift, Progress in Math. (86) 1 , Birkh¨auser, Boston, 1990, 333400.Google Scholar
[4] Chinburg, T., Exact sequences and Galois module structure. Ann. of Math. 121 (1985), 351376.Google Scholar
[5] Chinburg, T., Kolster, M., Pappas, G. and Snaith, V. P., Galois structure of K-groups of rings of integers. R, C.. Acad. Sci. Paris Séries I Math. 320 (1995), 14351440.Google Scholar
[6] Chinburg, T., Kolster, M., Pappas, G. and Snaith, V. P., Galois structure of K-groups of rings of integers. K -Theory (4) 14 (1998), 319369.Google Scholar
[7] Chinburg, T., Kolster, M., Pappas, G. and Snaith, V. P., Quaternionic Exercises in K-theory Galois Module Structure. Proc. Great Lakes K -theory Conf., 1996. Fields Insitute Communications 16 , Amer. Math. Soc. Publ. 1997, 129.Google Scholar
[8] Chinburg, T., Kolster, M., Pappas, G. and Snaith, V. P., Quaternionic Exercises in K-theory Galois Module Structure II. Proc. Algebraic K-theory Conf. I. C. T. P. Trieste, World Scientific Press, 1999, 337369.Google Scholar
[9] Grayson, D. R., On the K-theory of fields. Proc. Conf. algebraic K -theory and algebraic number theory, Honolulu, 1987, Amer. Math. Soc. Contemp. Math. 83 (1989), 3155.Google Scholar
[10] Hilton, P. J. and Stammbach, U., A Course in Homological Algebra. Graduate Texts in Math. 4 , Springer-Verlag, 1971.Google Scholar
[11] Kahn, B., Descente Galoisienne et K2 des corps de nombres. K-Theory (1) 7 (1993), 55100.Google Scholar
[12] Kato, K., Iwasawa theory and p-adic Hodge theory. Kodai Math. J. (1) 16 (1993), 131.Google Scholar
[13] Lang, S., Algebraic Number Theory. Addison-Wesley 2nd. ed., 1984.Google Scholar
[14] Levine, M., The indecomposable K3 of a field. Ann. Sci. ´ Ecole Norm. Sup. 22 (1989), 255344.Google Scholar
[15] Merkurjev, A. S., K2 of fields and the Brauer group. Applications of algebraic K -theory to geometry and number theory, Part II, Contemp. Math. 55 (1986), 529546.Google Scholar
[16] Milne, J.S., É tale cohomology. Princeton Mathematical Series 33 , Princeton Univ. Press, 1980.Google Scholar
[17] Merkurjev, A. S. and Suslin, A. A., K-cohomology of Severi-Brauer varieties and the norm residue homomorphism. Izv. Akad. Nauk. SSSR 46 (1982), 1011–1046. English trans. Math. USSR 21 (1983), 307340.Google Scholar
[18] Merkurjev, A. S. and Suslin, A. A., The K3 group of a field. Izv. Akad. Nauk. SSSR Ser. Mat. 54 (1990), 339–356. English trans. Math. USSR 36 (1990), 541565.Google Scholar
[19] Snaith, V. P., Galois Module Structure. Fields Institute Monographs 2 , Amer. Math. Soc., 1995.Google Scholar
[20] Snaith, V. P., Explicit Brauer Induction (with applications to algebra and number theory). Cambridge Studies in Advanced Math. 42 , Cambridge University Press, 1994.Google Scholar
[21] Snaith, V. P., Topological Methods in Galois Representation Theory. Canadian Math. Soc. Monographs, Wiley, 1989.Google Scholar
[22] Snaith, V. P., Local fundamental classes derived fromhigher-dimensional K-groups I,II. Proc. Great Lakes K -theory Conf., 1996, Fields Insitute Communications 16 , Amer. Math. Soc. Publ., 1997, 285–323.and 325344.Google Scholar
[23] Snaith, V. P., Hecke algebras and class-group Invariants. Canad. J. Math. (6) 49 (1997), 12651280.Google Scholar
[24] Soulé, C., K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale. Invent. Math. 55 (1979), 251295.Google Scholar
[25] Soulé, C., Groupes de Chow et K-théorie de variétés sur un corps fini. Math. Ann. 268 (1984), 317345.Google Scholar