Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T06:00:39.388Z Has data issue: false hasContentIssue false

Coisotropic Submanifolds in b-symplectic Geometry

Published online by Cambridge University Press:  24 February 2020

Stephane Geudens
Affiliation:
KU Leuven, Department of Mathematics, Celestijnenlaan 200B box 2400, BE-3001Leuven, Belgium e-mail: [email protected]
Marco Zambon*
Affiliation:
KU Leuven, Department of Mathematics, Celestijnenlaan 200B box 2400, BE-3001Leuven, Belgium e-mail: [email protected]

Abstract

We study coisotropic submanifolds of b-symplectic manifolds. We prove that b-coisotropic submanifolds (those transverse to the degeneracy locus) determine the b-symplectic structure in a neighborhood, and provide a normal form theorem. This extends Gotay’s theorem in symplectic geometry. Further, we introduce strong b-coisotropic submanifolds and show that their coisotropic quotient, which locally is always smooth, inherits a reduced b-symplectic structure.

Type
Article
Copyright
© Canadian Mathematical Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, R. and Marsden, J., Foundations of mechanics. 2nd ed., Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978.Google Scholar
Candel, A. and Conlon, L., Foliations. I. Graduate Studies in Mathematics, 23, American Mathematical Society, Providence, RI, 2000.Google Scholar
Cannas da Silva, A., Lectures on symplectic geometry. Lecture Notes in Mathematics, 1764, Springer-Verlag, Berlin, 2001. https://doi.org/10.1007/978-3-540-45330-7 Google Scholar
Cannas da Silva, A. and Weinstein, A., Geometric models for noncommutative algebras. Berkeley Mathematics Lecture Notes, 10, American Mathematical Society, Berkeley, CA, 1999.Google Scholar
Cavalcanti, G. and Klaasse, R., Fibrations and log-symplectic structures . J. Symplectic Geom. 17(2019), 603638. https://doi.org/10.4310/JSG.2019.v17.n3.a1 CrossRefGoogle Scholar
Cavalcanti, G. R., Examples and counter-examples of log-symplectic manifolds. J. Topol. 10(2017), 121. https://doi.org/10.1112/topo.12000 CrossRefGoogle Scholar
Geudens, S. and Zambon, M., Deformations of Lagrangian submanifolds in $b$ -symplectic geometry. In preparation.Google Scholar
Gotay, M. J., On coisotropic imbeddings of presymplectic manifolds. Proc. Amer. Math. Soc. 84(1982), 111114. https://doi.org/10.2307/2043821 CrossRefGoogle Scholar
Gualtieri, M. and Li, S., Symplectic groupoids of log symplectic manifolds. Int. Math. Res. Not. IMRN 2014, no. 11. 30223074. https://doi.org/10.1093/imrn/rnt024 CrossRefGoogle Scholar
Gualtieri, M., Li, S., Pelayo, A., and Ratiu, T., The tropical momentum map: a classification of toric log symplectic manifolds. Math. Ann. 367(2017), 12171258. https://doi.org/10.1007/s00208-016-1427-9 CrossRefGoogle Scholar
Guillemin, V., Miranda, E., and Pires, A. R., Symplectic and Poisson geometry on b-manifolds. Adv. Math. 264(2014), 864896.CrossRefGoogle Scholar
Guillemin, V., Miranda, E., Pires, A. R., and Scott, G., Toric actions on $b$ -symplectic manifolds. Int. Math. Res. Not. IMRN 2015, 58185848. https://doi.org/10.1093/imrn/rnu108 CrossRefGoogle Scholar
Kirchhoff-Lukat, C., Aspects of generalized geometry: Branes with boundary, blow-ups, brackets and bundles. PhD thesis, University of Cambridge, Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/283007 Google Scholar
Klaasse, R., Geometric structures and Lie algebroids. PhD thesis, Utrecht University, Utrecht, 2017. https://arxiv/abs/1712.09560 Google Scholar
Klaasse, R. and Lanius, M., Poisson cohomology of almost-regular Poisson structures. In preparation.Google Scholar
Marrero, J. C., Padrón, E., and Rodríguez-Olmos, M., Reduction of a symplectic-like Lie algebroid with momentum map and its application to fiberwise linear Poisson structures . J. Phys. A 45(2012), 165201.CrossRefGoogle Scholar
Marsden, J., Misiolek, G., Ortega, J.-P., Perlmutter, M., and Ratiu, T., Hamiltonian reduction by stages. Lecture Notes in Mathematics, 1913, Springer, Berlin, 2007.Google Scholar
Melrose, R. B., The Atiyah-Patodi-Singer index theorem. Research Notes in Mathematics, 4, A K Peters, Ltd., Wellesley, MA, 1993. https://doi.org/10.1016/0377-0257(93)80040-i Google Scholar
Milnor, J., Lectures on the $h$ -cobordism theorem. Princeton University Press, Princeton, NJ, 1965.Google Scholar
Polishchuk, A., Algebraic geometry of Poisson brackets . J. Math. Sci. 84(1997), 14131444. https://doi.org/10.1007/BF02399197 CrossRefGoogle Scholar
Sevestre, G. and Wurzbacher, T., Lagrangian submanifolds of standard multisymplectic manifolds . In: Geometric and harmonic analysis on homogeneous spaces and applications, Springer Proc. Math. Stat., 290, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-26562-5_8 Google Scholar
Śniatycki, J. and Weinstein, A., Reduction and quantization for singular momentum mappings. Lett. Math. Phys. 7(1983), 155161. https://doi.org/10.1007/BF00419934 CrossRefGoogle Scholar
Vaisman, I., Lectures on the geometry of Poisson manifolds. Birkhäuser Verlag, Basel, 1994. https://doi.org/10.1007/978-3-0348-8495-2 CrossRefGoogle Scholar