Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-18T09:39:11.473Z Has data issue: false hasContentIssue false

Classic and Mirabolic Robinson–Schensted–Knuth Correspondence for Partial Flags

Published online by Cambridge University Press:  20 November 2018

Daniele Rosso*
Affiliation:
The University of Chicago, Department of Mathematics, 5734 S. University Ave. Chicago, IL 60637 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we first generalize to the case of partial flags a result proved both by Spaltenstein and by Steinberg that relates the relative position of two complete flags and the irreducible components of the flag variety in which they lie, using the Robinson–Schensted–Knuth correspondence. Then we use this result to generalize the mirabolic Robinson–Schensted–Knuth correspondence defined by Travkin, to the case of two partial flags and a line.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2012

References

[AH] Achar, P. N. and Henderson, A., Orbit closures in the enhanced nilpotent cone. Adv. in Math. 219(2008), 2762. http://dx.doi.org/10.1016/j.aim.2008.04.008 Google Scholar
[BLM] Beilinson, A., Lusztig, G. and Mac Pherson, R., A geometric setting for the quantum deformation of GLn. Duke Math. J. 62(1990), 655677. http://dx.doi.org/10.1215/S0012-7094-90-06124-1 Google Scholar
[CG] Chriss, N. and Ginzburg, V., Representation Theory and Complex Geometry. Birkhäuser, Boston, 1997.Google Scholar
[F] Fulton, W., Young Tableaux. London Math. Soc. Student Texts 35, Cambridge University Press, 1997.Google Scholar
[H] Haines, T., Equidimensionality of convolution morphisms and applications to saturation problems. Adv. Math. 207(2006), 297327. http://dx.doi.org/10.1016/j.aim.2005.11.014 Google Scholar
[K] Knuth, D. E. Permutations, matrices and generalized Young tableaux. Pacific J. Math. 34(1970), 709727.Google Scholar
[v L] van Leeuwen, M., Flag varieties and interpretations of Young tableaux algorithms. J. Algebra 224(2000), 397426. http://dx.doi.org/10.1006/jabr.1999.8070 Google Scholar
[M] Magyar, P., Bruhat Order for Two Flags and a Line. J. Algebraic Combin. 21(2005), 71101. http://dx.doi.org/10.1007/s10801-005-6281-x Google Scholar
[MWZ] Magyar, P., J.Weyman and Zelevinsky, A., Multiple flags of finite type. Adv. Math. 141(1999), 97118. http://dx.doi.org/10.1006/aima.1998.1776 Google Scholar
[R] de B, G.. Robinson, On the representations of the symmetric group. Amer. J. Math. 60(1938), 745760. http://dx.doi.org/10.2307/2371609 Google Scholar
[Sc] Schensted, C., Longest increasing and decreasing subsequences. Canad. J. Math. 13(1961), 179191. http://dx.doi.org/10.4153/CJM-1961-015-3 Google Scholar
[Sh] Shimomura, N., A theorem on the fixed point set of a unipotent transformation on the flag manifold. J. Math. Soc. Japan 32(1980), 5564. http://dx.doi.org/10.2969/jmsj/03210055 Google Scholar
[Sp1] Spaltenstein, N., The fixed point set of a unipotent transformation on the flag manifold. Nederl. Akad.Wetensch. Proc. Ser. A 79=Indag. Math. 38(1976), 452456.Google Scholar
[Sp2] Spaltenstein, N., Classes unipotentes et sous-groupes de Borel. Lecture Notes in Math. 946, Springer-Verlag, Berlin–New York, 1982.Google Scholar
[S2] Stanley, R. P., Enumerative Combinatorics, Vol. 2. Cambridge Stud. Adv. Math. 62, Cambridge University Press, Cambridge, 1999.Google Scholar
[St] Steinberg, R., An occurence of the Robinson–Schensted correspondence. J. Algebra 113(1988), 523528. http://dx.doi.org/10.1016/0021-8693(88)90177-9 Google Scholar
[T] Travkin, R., Mirabolic Robinson–Schensted–Knuth correspondence. Selecta Math. (N. S.) 14(2009), 727758. http://dx.doi.org/10.1007/s00029-009-0508-yGoogle Scholar