Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T13:03:35.305Z Has data issue: false hasContentIssue false

Casselman’s Basis of Iwahori Vectors and the Bruhat Order

Published online by Cambridge University Press:  20 November 2018

Daniel Bump
Affiliation:
Department of Mathematics Stanford University Department of Mathematics Stanford University California 94305-2125 USA email: [email protected]@kitasato-u.ac.jp
Maki Nakasuji
Affiliation:
Department of Mathematics Stanford University Department of Mathematics Stanford University California 94305-2125 USA email: [email protected]@kitasato-u.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

W. Casselman defined a basis ${{f}_{u}}$ of Iwahori fixed vectors of a spherical representation $(\pi ,\,V)$ of a split semisimple $p$-adic group $G$ over a nonarchimedean local field $F$ by the condition that it be dual to the intertwining operators, indexed by elements $u$ of the Weyl group $W$. On the other hand, there is a natural basis ${{\psi }_{u}}$, and one seeks to find the transition matrices between the two bases. Thus, let ${{f}_{u}}\,=\,{{\sum }_{v}}\overset{\tilde{\ }}{\mathop{m}}\,(u,\,v){{\psi }_{v}}$ and ${{\psi }_{u}}\,=\,{{\sum }_{v}}m(u,\,v){{f}_{v}}$. Using the Iwahori–Hecke algebra we prove that if a combinatorial condition is satisfied, then $m(u,\,v)\,=\,{{\Pi }_{\alpha }}\,\frac{1-{{q}^{-1}}\,{{z}^{\alpha }}}{1-{{z}^{\alpha }}}$ , where $\mathbf{z}$ are the Langlands parameters for the representation and $\alpha $ runs through the set $S(u,\,v)$ of positive coroots $\alpha \,\in \,\hat{\Phi }$ (the dual root systemof $G$) such that $u\,\le \,v{{r}_{\alpha }}\,<\,v$ with ${{r}_{\alpha }}$ the reflection corresponding to $\alpha $. The condition is conjecturally always satisfied if $G$ is simply-laced and the Kazhdan–Lusztig polynomial ${{P}_{{{w}_{0}}v,\,{{w}_{0}}u}}\,=\,1$ with ${{w}_{0}}$ the long Weyl group element. There is a similar formula for $\tilde{m}$ conjecturally satisfied if ${{P}_{u,\,v}}\,=\,1$. This leads to various combinatorial conjectures.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2011

References

[1] Bourbaki, N., Lie groups and Lie algebras. Chapters 4–6. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley.Google Scholar
[2] Carrell, J. B., The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties. In: Algebraic Groups and Their Generalizations: Classical Methods. Proc. Sympos. Pure Math. 56. American Mathematical Soiety., Providence, RI, 1994, pp. 5361.Google Scholar
[3] Casselman, W., The unramified principal series of p-adic groups. I. The spherical function. Compositio Math. 40(1980), no. 3, 387406.Google Scholar
[4] Casselman, W. and J. Shalika, The unramified principal series of p-adic groups. II. The Whittaker function. Compositio Math. 41(1980), no. 2, 207231.Google Scholar
[5] Chevalley, C., Sur certains groupes simples. Tôohoku Math. J. 7(1955), 1466, 1955. doi:10.2748/tmj/1178245104Google Scholar
[6] Deodhar, V. V., Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function. Invent. Math. 39(1977), no. 2, 187198. doi:10.1007/BF01390109Google Scholar
[7] Deodhar, V. V., Local Poincaré duality and nonsingularity of Schubert varieties. Comm. Algebra 13(1985), no. 6, 13791388. doi:10.1080/00927878508823227Google Scholar
[8] Deodhar, V. V., On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells. Invent. Math. 79(1985), no. 3, 499511. doi:10.1007/BF01388520Google Scholar
[9] Dyer, M. J.. The nil Hecke ring and Deodhar's conjecture on Bruhat intervals. Invent. Math. 111(1993), no. 3, 571574. doi:10.1007/BF01231299Google Scholar
[10] Haines, T. J., R. E. Kottwitz, and A. Prasad Iwahori-Hecke algebras. J. Ramanujan Math. Soc. 25(2010), no. 2, 113145.Google Scholar
[11] Humphreys, J. E., Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics 29. Cambridge University Press, Cambridge, 1990.Google Scholar
[12] Iwahori, N., Generalized Tits system (Bruhat decomposition) on p-adic semisimple groups. In: Algebraic Groups and Discontinuous Subgroups. American Mathematical Society, Providence, RI, 1966, pp. 7183 Google Scholar
[13] Iwahori, N. and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups. Inst. Hautes Études Sci. Publ. Math. No. 25, 1965, 5–48.Google Scholar
[14] Kazhdan, D. and G. Lusztig, Representations of Coxeter groups and Hecke algebras. Invent. Math. 53(1979), no. 2, 165184. doi:10.1007/BF01390031Google Scholar
[15] Langlands, R. P., Euler products. Yale Mathematical Monographs 1. Yale University Press, New Haven, CT, 1971.Google Scholar
[16] Matsumoto, H., Analyse harmonique dans les systèmes de Tits bornologiques de type affine. Lecture Notes in Mathematics 590. Springer-Verlag, Berlin, 1977.Google Scholar
[17] Polo, P., On Zariski tangent spaces of Schubert varieties, and a proof of a conjecture of Deodhar. Indag. Math. (N.S.) 5(1994), no. 4, 483493. doi:10.1016/0019-3577(94)90019-1Google Scholar
[18] Reeder, M., On certain Iwahori invariants in the unramified principal series. Pacific J. Math. 153(1992), no. 2, 313342.Google Scholar
[19] Rogawski, J. D., On modules over the Hecke algebra of a p-adic group. Invent. Math. 79(1985), no. 3, 443465. doi:10.1007/BF01388516Google Scholar
[20] Stein, W. et. al., SAGE Mathematical Software, Version 4.3.2. http://www.sagemath.org, 2010.Google Scholar
[21] Stembridge, J. R., A short derivation of the Möbius function for the Bruhat order. J. Algebraic Combin. 25(2007), no. 2, 141148. doi:10.1007/s10801-006-0027-2Google Scholar
[22] Verma, D.-N., Möbius inversion for the Bruhat ordering on a Weyl group. Ann. Sci. École Norm. Sup. 4(1971), 393398.Google Scholar