Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-05T02:44:52.763Z Has data issue: false hasContentIssue false

The Caratheodory Metric and its Majorant Metrics

Published online by Cambridge University Press:  20 November 2018

Jacob Burbea*
Affiliation:
University of Pittsburgh, Pittsburgh, Pennsylvania
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One of the main purposes of the present paper is to provide a proof for the following statement:

Theorem A. Let M be a complex manifold of a complex dimension n. Let be a fixed point in M such that there exists a square integrable holomorphic n-form a(z) on M with .

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1977

References

1. Bergman, S., The kernel function and conformai mapping, Math. Surveys 5 (Amer. Math. Soc, Providence, 1970).Google Scholar
2. Burbea, J., The curvatures of the analytic capacity, submitted for publication.Google Scholar
3. Fuks, B. A., On the Ricci curvature of a Bergman metric invariant under biholomorphic mappings, Dokl. Akad. Nauk SSSR 167 (1966), 996999.Google Scholar
4. Hahn, K. T., On completeness of the Bergman metric and its subordinate metric, to appear, Proc. Nat. Acad. Sc. U.S.A.Google Scholar
5. Kobayashi, S., Geometry of bounded domains, Trans. Amer. Math. Soc. 92 (1959), 267290.Google Scholar
6. Lichnerowicz, A., Variétés complexes et tenseur de Bergmann, Ann. Inst. Fourier (Grenoble) 15 (1965), 345408.Google Scholar
7. Look, K. H., Schwarz Lemma and analytic invariants, Sci. Sinica 7 (1958), 453504.Google Scholar
8. Reiffen, H. J., Die differentialgeometrischen Eigenschaften der invarianten Distanzfunktion von Carathêodry, Schrift Math. Inst. Univ. Miinster #tf (1963).Google Scholar
9. Suita, N., On a metric induced by analytic capacity, Kodai Math. Sem. Rep. 25 (1973), 215218.Google Scholar