Published online by Cambridge University Press: 20 November 2018
Let A be a commutative real Banach algebra with unit, and MA its maximal ideal space. The existence of the Silov boundary SA for A was established in [5] by resorting to the complexification of A. We give here an intrinsic proof of this result which exhibits the close connection between the absolute values and the real parts of ‘functions’ in A (Theorem 1.3).