Published online by Cambridge University Press: 20 November 2018
Our aim in this paper is to generalize certain ideas and results of Bary (1) on biorthogonal systems in separable Hilbert spaces to their counterparts in separable lp-spaces, 1 < p.The main result of Bary is to characterize a natural generalization of the concept of orthonormal basis for a Hilbert space. That of this paper is to characterize the concept of a Bary basis which is a generalization of the idea of standard basis of an lp-space. The result is interesting for lp-spaces because of the paucity of standard bases in these spaces.
Before summarizing our results, we shall introduce some notation and recall a few pertinent definitions and facts. The symbols and denote mutually conjugate lp-spaces, where is the space lt and the space lswith 1 < r <2 and 2 < s = r/(r – 1).