Published online by Cambridge University Press: 20 November 2018
A quasi-Frobenius ring is a ring with minimum condition satisfying the conditions r(l)H)) = H and l(r(L)) = L for right ideals H and left ideals L where r(S) (l(S)) denotes the right (left) annihilator of a subset S of the ring. Nakayama first defined and studied such rings (8; 9) and they have been studied by a number of authors (2; 3; 4; 6). A dual ring is a topological ring satisfying the conditions r(l)H)) = H and l(r)H)) = L for closed right ideals H and closed left ideals L. Baer (1) and Kaplansky (7) introduced the notion of such rings, which is a natural generalization of that of quaso-Frobenius rings. Numakura studied the analogy between dual rings and quasi-Frobenius rings in (10).