Article contents
Arithmetic of Degenerating Principal Variations of Hodge Structure: Examples Arising From Mirror Symmetry and Middle Convolution
Published online by Cambridge University Press: 20 November 2018
Abstract
We collect evidence in support of a conjecture of Griffiths, Green, and Kerr on the arithmetic of extension classes of limiting mixed Hodge structures arising from semistable degenerations over a number field. After briefly summarizing how a result of Iritani implies this conjecture for a collection of hypergeometric Calabi–Yau threefold examples studied by Doran and Morgan, the authors investigate a sequence of (non-hypergeometric) examples in dimensions $1\,\le \,d\,\le \,6$ arising from Katz's theory of the middle convolution. A crucial role is played by the Mumford-Tate group (which is ${{G}_{2}}$ ) of the family of 6-folds, and the theory of boundary components of Mumford–Tate domains.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2016
References
- 3
- Cited by