Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-15T21:18:14.838Z Has data issue: false hasContentIssue false

Approximation by Dilated Averages and K-Functionals

Published online by Cambridge University Press:  20 November 2018

Z. Ditzian
Affiliation:
Department of Math. and Stat. Sciences, University of Alberta, Edmonton, AB, e-mail: [email protected]
A. Prymak
Affiliation:
Department of Mathematics, University of Manitoba, Winnipeg, MB, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a positive finite measure $d\mu \left( \mathbf{u} \right)$ on ${{\mathbb{R}}^{d}}$ normalized to satisfy $\int{_{{{\mathbb{R}}^{d}}}d\mu \left( \mathbf{u} \right)}=1$ , the dilated average of $f\left( \mathbf{x} \right)$ is given by

$${{A}_{t}}\,f\left( \mathbf{x} \right)\,=\,\int{_{{{\mathbb{R}}^{d}}}\,f\left( \mathbf{x}\,-\,t\mathbf{u}\, \right)}d\mu \left( \mathbf{u} \right)$$

It will be shown that under some mild assumptions on $d\mu \left( \mathbf{u} \right)$ one has the equivalence

$$||{A_t}f - f|{|_B} \approx \inf \left\{ {\left( {||f - g|{|_B} + {t^2}||P\left( D \right)g|{|_B}} \right):P\left( D \right)g \in B} \right\}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\rm{for}}{\mkern 1mu} {\mkern 1mu} {\rm{t}}{\mkern 1mu} {\rm{ > }}\,{\rm{0,}}$$

where $\varphi \left( t \right)\approx \psi \left( t \right)$ means ${{c}^{-1}}\le \varphi \left( t \right)/\psi \left( t \right)\le c$ , $B$ is a Banach space of functions for which translations are continuous isometries and $P\left( D \right)$ is an elliptic differential operator induced by $\mu $. Many applications are given, notable among which is the averaging operator with $d\mu \left( \mathbf{u} \right)\,=\,\frac{1}{m\left( S \right)}{{\chi }_{S}}\left( \mathbf{u} \right)d\mathbf{u},$ where $S$ is a bounded convex set in ${{\mathbb{R}}^{d}}$ with an interior point, $m\left( S \right)$ is the Lebesgue measure of $S$, and ${{\chi }_{S}}\left( \mathbf{u} \right)$ is the characteristic function of $S$. The rate of approximation by averages on the boundary of a convex set under more restrictive conditions is also shown to be equivalent to an appropriate $K$-functional.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2010

References

[Be-Da-Di] Belinsky, E., Dai, F., and Ditzian, Z., Multivariate approximating averages. J. Approx. Theory 125(2003), no. 1, 85–105. doi:10.1016/j.jat.2003.09.005Google Scholar
[Ch-Di] Chen, W. and Ditzian, Z., Mixed and directional derivatives. Proc. Amer. Math. Soc. 108(1990), no. 1, 177–185. doi:10.2307/2047711Google Scholar
[Da] Dai, F., Some equivalence theorems with K-functionals. J. Approx. Theory 121(2003), no. 1, 143–157. doi:10.1016/S0021-9045(02)00059-XGoogle Scholar
[Da-Di] Dai, F. and Ditzian, Z., Combinations of multivariate averages. J. Approx. Theory, 131(2004), no. 2, 268–283. doi:10.1016/j.jat.2004.10.003Google Scholar
[Di-I] Ditzian, Z., Multivariate Landau–Kolmogorov-type inequality. Math. Proc. Cambridge Philos. Soc. 105(1989), no. 2, 335–350. doi:10.1017/S0305004100067839Google Scholar
[Di-II] Ditzian, Z., The Laplacian and the discrete Laplacian. Compositio Math. 69(1989), no. 1, 111–120.Google Scholar
[Di-Iv] Ditzian, Z. and Ivanov, K. G., Strong converse inequalities. J. Anal. Math. 61(1993), 61–111. doi:10.1007/BF02788839Google Scholar
[Di-Pr] Ditzian, Z. and Prymak, A., Ul’yanov-type inequality for bounded convex sets in Rd. J. Approx. Theory 151(2008), no. 1, 60–85. doi:10.1016/j.jat.2007.09.002Google Scholar
[Di-Ru] Ditzian, Z. and Runovskii, K., Averages and K-functionals related to the Laplacian. J. Approx. Theory 97(1999), no. 1, 113–139. doi:10.1006/jath.1997.3262Google Scholar
[St] Stein, E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993.Google Scholar
[St-We] Stein, E. M. and Weiss, G., Introduction to Fourier analysis on Euclidean spaces. Princeton Mathematical Series, 32, Princeton University Press, Princeton, NJ, 1971.Google Scholar
[To] Totik, V., Approximation by Bernstein polynomials. Amer. J. Math. 116(1994), no. 4, 995–1018. doi:10.2307/2375007Google Scholar