Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T17:32:51.875Z Has data issue: false hasContentIssue false

An Integral Representation for the Product of Spectral Measures

Published online by Cambridge University Press:  20 November 2018

N. A. Derzko*
Affiliation:
University of Toronto, Toronto, Ontario
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let be a Hilbert space with inner product (•, •) and let E(•) and E0(•) be spectral measures in corresponding to self-adjoint operators and . In this paper we consider the set function ƒ(I × J) = E(I)E0(J) defined on the semiring of bounded rectangles, and obtain an integral representation for this set function for disjoint I, J under the hypotheses that H — H0 is a type of Carleman operator.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1968

References

1. Dunford, N. and Schwartz, J., Linear operators (Part II, Interscience, New York, 1958).Google Scholar
2. Friedrichs, K. O., On the perturbation of continuous spectra, Comm. Pure Appl. Math. 4 1951), 361406.Google Scholar
3. Hoffman, K., Banach spaces of analytic functions (Prentice Hall, Englewood Cliffs, N.J., 1962).Google Scholar
4. Kato, T., Perturbation theory for linear operators (Springer-Verlag, New York, 1966).Google Scholar
5. Kuroda, S. T., On the existence and unitary property of the scattering operator, Nuovo Cimento 12 (1959), 431454.Google Scholar
6. Nevanlinna, R., Eindeutige analytische Funktionen (J. Springer, Berlin, 1936).10.1007/978-3-662-41799-7CrossRefGoogle Scholar
7. Rejto, P., On gentle perturbations. I, Comm. Pure Appl. Math. 16 (1963), 279303.Google Scholar