Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T00:46:01.809Z Has data issue: false hasContentIssue false

Algebraic Homotopy Theory

Published online by Cambridge University Press:  20 November 2018

J. F. Jardine*
Affiliation:
University of British Columbia, Vancouver, British Columbia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Kan and Miller have shown in [9] that the homotopy type of a finite simplicial set K can be recovered from its R-algebra of 0-forms A0K, when R is a unique factorization domain. More precisely, if is the category of simplicial sets and is the category of R-algebras there is a contravariant functor

with

the simplicial set homomorphisms from X to the simplicial R-algebra ∇, where

and the faces and degeneracies of ∇ are induced by

and

respectively.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1981

References

1. Artin, M. and Mazur, B., Etale homotopy, Lecture Notes in Mathematics 100 (Springer-Verlag, 1969).Google Scholar
2. Atiyah, M. F. and Macdonald, I. G., Introduction to commutative algebra (Addison-Wesley, Reading, Mass., 1969).Google Scholar
3. Bell, J. L. and Slomson, A. B., Models and ultraproducts: an introduction (North-Holland, Amsterdam, 1969).Google Scholar
4. Bousfield, A. K. and Guggenheim, V. K. A. M., On PL de Rham theory and rational homotopy type, Memoir Am. Math. Soc. 179 (1976).Google Scholar
5. Bousfield, A. K. and Kan, D. M., Homotopy limits completions and localizations, Lecture Notes in Mathematics 304 (Springer-Verlag, 1972).Google Scholar
6. Devlin, K. J., The axiom of constructibility, Lecture Notes in Mathematics 617 (Springer-Verlag, 1977).Google Scholar
7. Gabriel, P. and Zisman, M., Calculus of fractions and homotopy theory (Springer-Verlag, Berlin-Heidelberg-New York, 1967).Google Scholar
8. Grothendieck, A. and Dieudonné, J., Éléments de géométrie algébrique IV; Etude local des schémas et des morphismes de schémas (quatrième partie), Publ. Math. IHES 32 (1967).Google Scholar
9. Kan, D. M. and Miller, E. Y., Homotopy types and Sullivan s algebras of O-forms, Topology 16 (1977), 193197.Google Scholar
10. MacLane, S., Categories for the working mathematician (Springer-Verlag, Berlin-Heidelberg-New York, 1971).Google Scholar
11. May, J. P., Simplicial objects in algebraic topology (Van Nostrand, Princeton, N.J., 1967).Google Scholar
12. Quillen, D. G., Homotopical algebra, Lecture Notes in Mathematics Jf.3 (Springer Verlag, 1967).Google Scholar
13. Quillen, D. G., Rational homotopy theory, Ann. of Math. 90 (1969), 205295.Google Scholar
14. Sullivan, D., Infinitesimal computations in topology, Publ. Math. IHES 47 (1977), 269332.Google Scholar
15. Zariski, O. and Samuel, P., Commutative algebra, Vol. 2 (Van Nostrand, Princeton, N.J., 1960).Google Scholar