Hostname: page-component-6bf8c574d5-8gtf8 Total loading time: 0 Render date: 2025-02-25T14:07:32.116Z Has data issue: false hasContentIssue false

Isometric dilation and Sarason’s commutant lifting theorem in several variables

Published online by Cambridge University Press:  25 February 2025

B. Krishna Das
Affiliation:
Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India e-mail: [email protected] [email protected]
Samir Panja*
Affiliation:
Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India e-mail: [email protected] [email protected]

Abstract

The article deals with isometric dilation and commutant lifting for a class of n-tuples $(n\ge 3)$ of commuting contractions. We show that operator tuples in the class dilate to tuples of commuting isometries of BCL type. As a consequence of such an explicit dilation, we show that their von Neumann inequality holds on a one-dimensional variety of the closed unit polydisc. On the basis of such a dilation, we prove a commutant lifting theorem of Sarason’s type by establishing that every commutant can be lifted to the dilation space in a commuting and norm-preserving manner. This further leads us to find yet another class of n-tuples $(n\ge 3)$ of commuting contractions each of which possesses isometric dilation.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agler, J., The Arveson extension theorem and coanalytic models . Integral Equations Operator Theory 5(1982), no. 5, 608631.CrossRefGoogle Scholar
Agler, J. and McCarthy, J., Distinguished varieties . Acta. Math. 194(2005), 133153.CrossRefGoogle Scholar
Ambrozie, C., Engli, M. $\check{s}$ and Müller, V., Operator tuples and analytic models over general domains in ${\mathbb{C}}^n$ . J. Operator Theory 47(2002), 287302.Google Scholar
Ando, T., On a pair of commutative contractions . Acta Sci. Math. (Szeged) 24(1963), 8890.Google Scholar
Arazy, J. and Engli, M. $\check{s}$ , Analytic models for commuting operator tuples on bounded symmetric domains . Trans. Amer. Math. Soc. 355(2003), 837864.CrossRefGoogle Scholar
Archer, J., Unitary dilations of commuting contractions. PhD Thesis, Newcastle University 2004.Google Scholar
Arveson, W., Subalgebras of ${C}^{\ast }$ -algebras. III, Multivariable operator theory. Acta Math. 181(1998), 159228.CrossRefGoogle Scholar
Ball, J. A. and Cohen, N., De Branges-Rovnyak operator models and system theory: a survey. In Operator theory: advances and applications, Vol. 50, Birkhäuser, 1991.Google Scholar
Ball, J. A., Li, W. S., Timotin, D. and Trent, T. T., A commutant lifting theorem on the polydisc . Indiana Univ. Math. J. 48(1999), 653675.CrossRefGoogle Scholar
Ball, J. A., Trent, T. T. and Vinnikov, V., Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces. In Operator theory: advances and applications, Vol. 122, Birkhäuser Basel, 2001, 89138.Google Scholar
Barik, S., Bhattacharjee, M. and Das, B. K., Commutant lifting in the Schur-Agler class . J. Operator Theory 91(2024), no. 2, 399419.Google Scholar
Barik, S. and Das, B. K., Isometric dilations of commuting contractions and Brehmer positivity . Complex Anal. Oper. Theory 16(2022), no. 5, Paper No. 69.CrossRefGoogle Scholar
Barik, S., Das, B. K., Haria, K. J. and Sarkar, J., Isometric dilations and von Neumann inequality for a class of tuples in the polydisc . Trans. Amer. Math. Soc. 372(2019), no. 2, 14291450.CrossRefGoogle Scholar
Barik, S., Das, B. K. and Sarkar, J., Isometric dilations and von Neumann inequality for finite rank commuting contractions . Bull. Sci. Math. 165(2020), 102915.CrossRefGoogle Scholar
Bercovici, H., Douglas, R. and Foias, C., On the classification of multi-isometries . Acta Sci. Math. (Szeged) 72(2006), 639661.Google Scholar
Berger, C., Coburn, L. and Lebow, A., Representation and index theory for ${C}^{\ast }\kern-1pt$ -algebras generated by commuting isometries. J. Funct. Anal. 27(1978), 5199.CrossRefGoogle Scholar
Bhattacharjee, M. and Das, B. K., Factors of hypercontractions . J. Operator Theory 85(2021), 443462.CrossRefGoogle Scholar
Bhattacharjee, M., Das, B. K., Debnath, R. and Panja, S., Dilations and operator models of $\mathcal {W}$ -hypercontractions . Complex Anal. Oper. Theory 17(2023), no. 2, Paper No. 22.CrossRefGoogle Scholar
Bhattacharyya, T., Kumar, P. and Sau, H., Distinguished varieties through the Berger-Coburn-Lebow theorem . Anal. PDE 15(2022), 477506.CrossRefGoogle Scholar
Brehmer, S., $\ddot{U}$ ber vertauschbare Kontraktionen des Hilbertschen Raumes . Acta Sci. Math. (Szeged) 22(1961), 106111.Google Scholar
Curto, R. E. and Vasilescu, F.-H., Standard operator models in the polydisc . Indiana Univ. Math. J. 42(1993), 791810.CrossRefGoogle Scholar
Curto, R. E. and Vasilescu, F.-H., Standard operator models in the polydisc. II Indiana Univ. Math. J. 44(1995), 727746.Google Scholar
Das, B. K. and Sarkar, J., Ando dilations, von Neumann inequality, and distinguished varieties . J. Funct. Anal. 272(2017), 21142131.CrossRefGoogle Scholar
Das, B. K., Sarkar, S. and Sarkar, J., Factorizations of contractions . Adv. Math. 322(2017), 186200.CrossRefGoogle Scholar
Davidson, K. R. and Le, T., Commutant lifting for commuting row contractions . Bull Lond. Math. Soc. 42(2010), 506516.CrossRefGoogle Scholar
Deepak, K. D., Pradhan, D., Sarkar, J. and Timotin, D., Commutant lifting and Nevanlinna-Pick interpolation in several variables . Integral Equations Operator Theory 92(2020), no. 3, Paper No. 27.CrossRefGoogle Scholar
Eschmeier, J. and Putinar, M., Spherical contractions and interpolation problems on the unit ball . J. Reine Angew. Math. 542(2002), 219236.Google Scholar
He, W., Qin, Y. and Yang, R., Numerical invariants for commuting isometric pairs . Indiana Univ. Math. J. 64(2015), 119.CrossRefGoogle Scholar
Müller, V., Commutant lifting theorem for n-tuples of contractions . Acta Sci. Math. (Szeged) 59(1994), 465474.Google Scholar
Müller, V. and Vasilescu, F.-H., Standard models for some commuting multioperators . Proc. Amer. Math. Soc. 117(1993), 979989.CrossRefGoogle Scholar
Sz-.Nagy, B.and Foias, C., Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam-London, 1970.Google Scholar
Parrott, S., Unitary dilations for commuting contractions . Pacific J. Math. 34(1970), 481490.CrossRefGoogle Scholar
Parrott, S., On a quotient norm and the Sz.-Nagy-Foiaş lifting theorem . J. Funct. Anal. 30(1978), 311328.CrossRefGoogle Scholar
Sarason, D., Generalized interpolation in ${H}^{\infty }$ . Trans. Amer. Math. Soc. 127(1967), 179203.Google Scholar
Sau, H., And $\hat{o}$ dilations for a pair of commuting contractions: two explicit constructions and functional models. Preprint, 2017, arXiv:1710.11368.Google Scholar
Taylor, J. L., A joint spectrum for several commuting operators . J. Funct. Anal. 6(1970), 172191.CrossRefGoogle Scholar