Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T02:39:22.872Z Has data issue: false hasContentIssue false

Factorization problems in complex reflection groups

Published online by Cambridge University Press:  02 April 2020

Joel Brewster Lewis
Affiliation:
Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA
Alejandro H. Morales*
Affiliation:
Department of Mathematics, George Washington University, Washington, DC e-mail: [email protected]

Abstract

We enumerate factorizations of a Coxeter element in a well-generated complex reflection group into arbitrary factors, keeping track of the fixed space dimension of each factor. In the infinite families of generalized permutations, our approach is fully combinatorial. It gives results analogous to those of Jackson in the symmetric group and can be refined to encode a notion of cycle type. As one application of our results, we give a previously overlooked characterization of the poset of W-noncrossing partitions.

Type
Article
Copyright
© Canadian Mathematical Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Dedicated to David M. Jackson in recognition of his 75th birthday

References

Athanasiadis, C. A. and Reiner, V., Noncrossing partitions for the group ${D}_n$ . SIAM J. Discrete Math. 18(2004), 397417.CrossRefGoogle Scholar
Armstrong, D., Generalized noncrossing partitions and combinatorics of Coxeter groups . Mem. Amer. Math. Soc. 202(2009), x+159.Google Scholar
Bessis, D. and Corran, R., Non-crossing partitions of type $\left(e,e,r\right)$ . Adv. Math. 202(2006), 149.CrossRefGoogle Scholar
Bernardi, O., An analogue of the Harer–Zagier formula for unicellular maps on general surfaces . Adv. Appl. Math. 48(2012), 164180.CrossRefGoogle Scholar
Bessis, D., Finite complex reflection arrangements are $K\left(\pi, 1\right)$ . Ann. Math. (2) 181(2015), 809904.CrossRefGoogle Scholar
Bernardi, O. and Morales, A. H., Bijections and symmetries for the factorizations of the long cycle . Adv. Appl. Math. 50(2013), 702722.CrossRefGoogle Scholar
Bernardi, O. and Morales, A. H., Some probabilistic trees with algebraic roots . Electron. J. Combin. 23(2016), P2.36.CrossRefGoogle Scholar
Bessis, D. and Reiner, V., Cyclic sieving of noncrossing partitions for complex reflection groups . Ann. Comb. 15(2011), 197222.CrossRefGoogle Scholar
Brady, T. and Watt, C., A partial order on the orthogonal group . Comm. Algebra 30(2002), 37493754.CrossRefGoogle Scholar
Carter, R. W., Conjugacy classes in the Weyl group . Compositio Math. 25(1972), 159.Google Scholar
Chapuy, G., Féray, V., and Fusy, É., A simple model of trees for unicellular maps . J. Combin. Theory Ser. A 120(2013), 20642092.CrossRefGoogle Scholar
Chapoton, F., Enumerative properties of generalized associahedra . Sém. Lothar. Combin. 51(2004/05), B51b.Google Scholar
Chapuy, G. and Stump, C., Counting factorizations of Coxeter elements into products of reflections . J. Lond. Math. Soc. (2) 90(2014), 919939.CrossRefGoogle Scholar
delMas, E. G., Hameister, T., and Reiner, V., A refined count of coxeter element reflection factorizations . Electron. J. Combin. 25(2018), 28.CrossRefGoogle Scholar
Douvropoulos, T., On enumerating factorizations in reflection groups. Preprint, 2018. https://arxiv.org/abs/1811.06566.Google Scholar
Foster-Greenwood, B., Comparing codimension and absolute length in complex reflection groups . Comm. Algebra 42(2014), 43504365.CrossRefGoogle Scholar
Frobenius, F. G., Uber Gruppencharacktere (1896). In: Gesammelte Abhandlungen, Bände III, Herausgegeben von J.-P. Serre, Springer-Verlag, Berlin-New York, 1968.Google Scholar
GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.10.1, 2019.Google Scholar
Goulden, I. P. and Jackson, D. M., The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group . Euro. J. Combin. 13(1992), 357365.CrossRefGoogle Scholar
Goulden, I. and Jackson, D., Transitive factorizations of permutations and geometry . In: Lam, P. H. T., Pylyavskyy, P., and Reiner, V. (eds.), The mathematical legacy of Richard P. Stanley. Amer. Math. Soc., Canada, 2016, pp. 189201.CrossRefGoogle Scholar
Goupil, A. and Schaeffer, G., Factoring n-cycles and counting maps of given genus . Euro. J. Combin. 19(1998), 819834.CrossRefGoogle Scholar
Huang, J., Lewis, J. B., and Reiner, V., Absolute order in general linear groups . J. Lond. Math. Soc. 95(2017), 223247.CrossRefGoogle Scholar
Hurwitz, A., Ueber riemann’sche flächen mit gegebenen verzweigungspunkten . Math. Ann. 39(1891), 160.CrossRefGoogle Scholar
Jackson, D. M., Some combinatorial problems associated with products of conjugacy classes of the symmetric group . J. Combin. Theory Ser. A 49(1988), 363369.CrossRefGoogle Scholar
Jackson, D. M. and Visentin, T. L., An atlas of the smaller maps in orientable and nonorientable surfaces. Chapman and Hall/CRC, UK, 2000.CrossRefGoogle Scholar
Krattenthaler, C. and Müller, T., Decomposition numbers for finite coxeter groups and generalised non-crossing partitions . Trans. Amer. Math. Soc. 362(2010), 27232787.CrossRefGoogle Scholar
Lewis, J. B. and Morales, A. H., Factorization problems in complex reflection groups. In: Proceedings of the 31st Conference on Formal Power Series and Algebraic Combinatorics (Ljubljana), vol. 82B, Sém. Lothar. Combin., 2019, p. 57.Google Scholar
Lewis, J. B. and Morales, A. H., Factorization problems in complex reflection groups. Preprint, 2019. https://arxiv.org/abs/1906.11961 Google Scholar
Lehrer, G. L. and Taylor, D. E., Unitary reflection groups. Aus. Math. Soc. Lecture Series, 20, Cambridge University Press, Cambridge, 2009.Google Scholar
Lando, S. K. and Zvonkin, A. K., Graphs on surfaces and their applications. Encyclopaedia of Math. Sci., 141, Springer-Verlag, Berlin, 2004. With an appendix by Don B. Zagier.CrossRefGoogle Scholar
Marin, I. and Michel, J., Automorphisms of complex reflection groups . Represent. Theory 14(2010), 747788.CrossRefGoogle Scholar
Morales, A. H., Combinatorics of colored factorizations, flow polytopes and of matrices over finite fields. Ph.D. thesis, MIT, 2012. https://dspace.mit.edu/handle/1721.1/73176.Google Scholar
Morales, A. H. and Vassilieva, E. A., Direct bijective computation of the generating series for 2 and 3-connection coefficients of the symmetric group . Electron. J. Combin. 20(2013), P6.CrossRefGoogle Scholar
Orlik, P. and Solomon, L., Unitary reflection groups and cohomology . Invent. Math. 59(1980), 7794.CrossRefGoogle Scholar
Orlik, P. and Solomon, L., Arrangements defined by unitary reflection groups . Math. Ann. 261(1982), 339357.CrossRefGoogle Scholar
Orlik, P. and Solomon, L., Coxeter arrangements . In: Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI, 1983, pp. 269291.Google Scholar
Orlik, P. and Terao, H., Arrangements of hyperplanes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 300, Springer-Verlag, Berlin, 1992.Google Scholar
Poulalhon, D. and Schaeffer, G., Factorizations of large cycles in the symmetric group . Discrete Math. 254(2002), 433458.CrossRefGoogle Scholar
Reiner, V., Non-crossing partitions for classical reflection groups . Discrete Math. 177(1997), 195222.CrossRefGoogle Scholar
Reiner, V., Ripoll, V., and Stump, C., On non-conjugate Coxeter elements in well-generated reflection groups . Math. Z. 285(2017), 10411062.CrossRefGoogle Scholar
The Sage Developers, SageMath, the Sage Mathematics Software System, 2019. http://www.sagemath.org.Google Scholar
G. Schaeffer, Planar maps . In: Bona, M. (ed.), Handbook of enumerative combinatorics, CRC Press, Boca Raton, FL, 2015, pp. 336395.CrossRefGoogle Scholar
Shi, J.-Y., Formula for the reflection length of elements in the group $G\left(m,p,n\right)$ . J. Algebra 316(2007), 284296.CrossRefGoogle Scholar
Shephard, G. C. and Todd, J. A., Finite unitary reflection groups . Canadian J. Math. 6(1954), 274304.CrossRefGoogle Scholar
Stanley, R. P., Enumerative combinatorics. Vol. 2. Cambridge University Press, Cambridge, 1999.CrossRefGoogle Scholar
Schaeffer, G. and Vassilieva, E., A bijective proof of Jackson’s formula for the number of factorizations of a cycle . J. Combin. Theory Ser. A 115(2008), 903924.CrossRefGoogle Scholar