Published online by Cambridge University Press: 12 February 2020
In this paper we analyze the convergence of the following type of series
Our analysis will consist in the boundedness, in $L^{p}(\mathbb{R}^{n})$ and in $BMO(\mathbb{R}^{n})$, of the operators $T_{N}^{{\mathcal{L}}}$ and its maximal operator $T^{\ast }f(x)=\sup _{N}T_{N}^{{\mathcal{L}}}f(x)$.
It is also shown that the local size of the maximal differential transform operators (with $V=0$) is the same with the order of a singular integral for functions $f$ having local support. Moreover, if ${\{v_{j}\}}_{j\in \mathbb{Z}}\in \ell ^{p}(\mathbb{Z})$, we get an intermediate size between the local size of singular integrals and Hardy–Littlewood maximal operator.
The first author was supported by the National Natural Science Foundation of China (Grant Nos. 11971431, 11401525), the Natural Science Foundation of Zhejiang Province (Grant No. LY18A010006), the first Class Discipline of Zhejiang-A (Zhejiang Gongshang University-Statistics) and the State Scholarship Fund (No. 201808330097). The second author was supported by grant PGC2018-099124-B-I00 (MINECO/FEDER) from Government of Spain.