Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-03T03:19:24.013Z Has data issue: false hasContentIssue false

Effect of prehospital initiation of therapeutic hypothermia in adults with cardiac arrest on time-to-target temperature

Published online by Cambridge University Press:  02 June 2015

Eric M. Schenfeld*
Affiliation:
Utah Emergency Physicians, Department of Emergency Medicine, Intermountain Medical Center, Intermountain Healthcare, Salt Lake City, UT
Jonathan Studnek
Affiliation:
Mecklenburg EMS Agency, Charlotte, NC
Alan C. Heffner
Affiliation:
Division of Critical Care Medicine, Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC Department of Emergency Medicine, Carolinas Medical Center, Charlotte, NC
Marcy Nussbaum
Affiliation:
Carolinas Health Care System, Dickson Advanced Analytics Group, Charlotte, NC
Kathi Kraft
Affiliation:
Carolinas Health Care System, Dickson Advanced Analytics Group, Charlotte, NC
David A. Pearson
Affiliation:
Department of Emergency Medicine, Carolinas Medical Center, Charlotte, NC
*
Correspondence to: Dr. Eric M. Schenfeld, Utah Emergency Physicians, Intermountain Healthcare, PO Box 571117, Murray, UT 84157-1117; [email protected]; [email protected].

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Objective: Despite growing adoption, the impact of prehospital initiation of therapeutic hypothermia on outcomes of cardiac arrest patients is unknown. The objective of this study was to determine if prehospital administration of cold intravenous fluids improved the time-to-target temperature.

Methods: All patients enrolled in an institutional post– cardiac arrest treatment pathway were prospectively registered into a quality assurance database. Patients undergoing cooling induction on hospital arrival were compared to those receiving a new treatment protocol initiated during the study period involving prehospital cooling with 4°C (39.2°F) normal saline. The primary outcome was the time-to-target temperature. Secondary outcomes included emergency medicine system transport time metrics, mortality, and neurologic status at discharge and 1 year.

Results: One hundred thirty-two patients were enrolled during the study period. The initial rhythm was ventricular fibrillation/tachycardia in 63% and asystole/pulseless electrical activity in 36%. Eighty patients received prehospital cooling and 52 patients did not and comprised the historical control group. Time-to-target temperatures were not significantly different between prehospital and hospital cooled groups (256 v. 271 minutes, respectively, p=0.64), nor was there any improvement in hospital survival (54% v. 50%, p=0.67), good neurologic outcome (49% v. 44%, p=0.61), or 1- year survival (49% v. 42%, p=0.46) between the two groups. Transport times were longer in the prehospital cooled group.

Conclusions: Out-of-hospital cardiac arrest patients treated with prehospital cooling before arrival at our urban hospital did not have faster time-to-target temperature or improvement in outcomes compared to patients cooled immediately on emergency department arrival. Further research is needed to determine if any benefits exist from prehospital cooling prior to its widespread adoption.

Résumé

Objectif: Bien que l’amorce de l’hypothermie thérapeutique en phase préhospitalière soit de plus en plus répandue, on n’en connaît pas l’effet sur les résultats, chez les patients victimes d’un arrêt cardiaque. L’étude visait à déterminer si l’administration intraveineuse de liquides froids, en phase préhospitalière, permettait d’atteindre plus rapidement la température cible.

Méthode: Tous les patients soumis à un parcours de traitement, en établissement, pour un arrêt cardiaque ont été inscrits de manière prospective dans une base de données sur l’assurance de la qualité. Les patients soumis au refroidissement à leur arrivée à l’hôpital ont été comparés avec ceux soumis au nouveau protocole de traitement mis en oeuvre durant la période à l’étude, comportant un refroidissement préhospitalier à l’aide de l’administration d’une solution physiologique salée maintenue à 4°C (39.2°F). Le principal critère d’évaluation était le temps nécessaire à l’atteinte de la température cible. Les critères d’évaluation secondaires comprenaient les mesures du temps de transport médical d’urgence, la mortalité, l’état neurologique au moment du congé et au bout de 1 an.

Résultats: Cent trente-deux patients ont été inscrits durant la période à l’étude. Les rythmes enregistrés au départ étaient la fibrillation ou la tachycardie ventriculaires dans 63% des cas ou encore l’asystole ou une activité électrique non pulsatile dans 36% des cas. Quatre-vingt patients ont été soumis au refroidissement préhospitalier et 52 patients, formant le groupe témoin historique, ne l’ont pas été. Le temps nécessaire à l’atteinte de la température cible n’était pas sensiblement différent entre le groupe de refroidissement préhospitalier et le groupe de refroidissement hospitalier (256 minutes contre [c.] 271, respectivement; p=0.64), pas plus qu’il n’y avait d’amélioration en ce qui concerne la survie à l’hôpital (54% c. 50%; p=0.67), l’état neurologique (49% c. 44%; p=0.61) et la survie au bout de 1 an (49% c. 42%; p=0.46) entre les deux groupes. Le temps de transport était toutefois plus long dans le groupe de refroidissement préhospitalier.

Conclusions: Le refroidissement préhospitalier chez les patients ayant subi un arrêt cardiaque, avant l’arrivée dans un hôpital urbain, n’a pas permis d’atteindre plus rapidement la température cible ou d’améliorer les résultats comparativement aux patients soumis au refroidissement dès leur arrivée au service des urgences. Aussi une recherche approfondie s’impose-t-elle afin de déterminer si le refroidissement préhospitalier comporte quelque avantage, et ce, avant l’adoption élargie de la pratique.

Type
Original Research
Copyright
Copyright © Canadian Association of Emergency Physicians 2015 

References

1. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002;346:549556, doi:10.1056/NEJMoa012689.CrossRefGoogle Scholar
2. Bernard, SA, Gray, TW, Buist, MD, et al.. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002;346:557563, doi:10.1056/NEJMoa003289.CrossRefGoogle ScholarPubMed
3. Dumas, F, Grimaldi, D, Zuber, B, et al.. Is hypothermia after cardiac arrest effective in both shockable and nonshockable patients?: insights from a large registry. Circulation 2011;123:877886, doi:10.1161/CIRCULATIONAHA.110.987347.CrossRefGoogle ScholarPubMed
4. Peberdy, MA, Callaway, CW, Neumar, RW, et al. Part 9: post-cardiac arrest care: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010;122(18 Suppl 3 S768S786 doi:10.1161/CIRCULATIONAHA.110.971002.CrossRefGoogle ScholarPubMed
5. Kuboyama, K, Safar, P, Radovsky, A, et al.. Delay in cooling negates the beneficial effect of mild resuscitative cerebral hypothermia after cardiac arrest in dogs: a prospective, randomized study. Crit Care Med 1993;21:13481358, doi:10.1097/00003246-199309000-00019.CrossRefGoogle ScholarPubMed
6. Nozari, A, Safar, P, Stezoski, SW, et al.. Critical time window for intra-arrest cooling with cold saline flush in a dog model of cardiopulmonary resuscitation. Circulation 2006;113:26902696, doi:10.1161/CIRCULATIONAHA.106.613349.CrossRefGoogle Scholar
7. Zhao, D, Abella, BS, Beiser, DG, et al.. Intra-arrest cooling with delayed reperfusion yields higher survival than earlier normothermic resuscitation in a mouse model of cardiac arrest. Resuscitation 2008;77:242249, doi:10.1016/j.resuscitation.2007.10.015.CrossRefGoogle Scholar
8. Menegazzi, JJ, Rittenberger, JC, Suffoletto, BP, et al.. Effects of pre-arrest and intra-arrest hypothermia on ventricular fibrillation and resuscitation. Resuscitation 2009;80:126132, doi:10.1016/j.resuscitation.2008.09.002.CrossRefGoogle ScholarPubMed
9. Haugk, M, Testori, C, Sterz, F, et al.. Relationship between time to target temperature and outcome in patients treated with therapeutic hypothermia after cardiac arrest. Crit Care 2011;15:R101 doi:10.1186/cc10116.CrossRefGoogle ScholarPubMed
10. Bruel, C, Parienti, JJ, Marie, W, et al.. Mild hypothermia during advanced life support: a preliminary study in out-ofhospital cardiac arrest. Crit Care 2008;12:R31 doi:10.1186/cc6809.CrossRefGoogle Scholar
11. Bernard, SA, Smith, K, Cameron, P, et al.. Induction of therapeutic hypothermia by paramedics after resuscitation from out-of-hospital ventricular fibrillation cardiac arrest: a randomized controlled trial. Circulation 2010;122:737742, doi:10.1161/CIRCULATIONAHA.109.906859.CrossRefGoogle ScholarPubMed
12. Skulec, R, Truhlar, A, Seblova, J, et al.. Pre-hospital cooling of patients following cardiac arrest is effective using even low volumes of cold saline. Crit Care 2010;14:R231 doi:10.1186/cc9386.CrossRefGoogle ScholarPubMed
13. Kim, F, Olsufka, M, Longstreth, WT Jr, et al.. Pilot randomized clinical trial of prehospital induction of mild hypothermia in out-of-hospital cardiac arrest patients with a rapid infusion of 4 degrees C normal saline. Circulation 2007;115:30643070, doi:10.1161/CIRCULATIONAHA.106.655480.CrossRefGoogle ScholarPubMed
14. Castren, M, Nordberg, P, Svensson, L, et al. Intra-arrest transnasal evaporative cooling: a randomized, prehospital, multicenter study (PRINCE: Pre-ROSC IntraNasal Cooling Effectiveness). Circulation 2010;122:729736, doi:10.1161/CIRCULATIONAHA.109.931691.CrossRefGoogle Scholar
15. Heffner, AC, Pearson, DA, Nussbaum, ML, Jones, AE. Regionalization of post-cardiac arrest care: implementation of a cardiac resuscitation center. Am Heart J 2012;164:493501, doi:10.1016/j.ahj.2012.06.014.CrossRefGoogle ScholarPubMed
16. Jacobs, I, Nadkarni, V, Bahr, J, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Councils of Southern Africa). Circulation 2004;110:33853397, doi:10.1161/01.CIR.0000147236.85306.15.CrossRefGoogle ScholarPubMed
17. Benz-Woerner, J, Delodder, F, Benz, R, et al.. Body temperature regulation and outcome after cardiac arrest and therapeutic hypothermia. Resuscitation 2012;83:338342, doi:10.1016/j.resuscitation.2011.10.026.CrossRefGoogle ScholarPubMed
18. Studnek, JR, Watts, JA, Vandeventer, S, Pearson, D.. Assessing the influence of insulation on intravenous fluid infusion temperature. Acad Emerg Med 2012;19:13091312, doi:10.1111/acem.12006.CrossRefGoogle ScholarPubMed
19. Spaite, DW, Stiell, IG, Bobrow, BJ, et al.. Effect of transport interval on out-of-hospital cardiac arrest survival in the OPALS study: implications for triaging patients to specialized cardiac arrest centers. Ann Emerg Med 2009;54:248255, doi:10.1016/j.annemergmed.2008.11.020.CrossRefGoogle ScholarPubMed
20. Jennett, B, Bond, M.. Assessment of outcome after severe brain damage. Lancet 1975;1:480484, doi:10.1016/S0140-6736 75:92830–5.CrossRefGoogle ScholarPubMed
21. Bernard, SA, Smith, K, Cameron, P, et al.. Induction of prehospital therapeutic hypothermia after resuscitation from nonventricular fibrillation cardiac arrest. Crit Care Med 2012;40:747753, doi:10.1097/CCM.0b013e3182377038.CrossRefGoogle ScholarPubMed
22. Sendelbach, S, Hearst, MO, Johnson, PJ, et al.. Effects of variation in temperature management on cerebral performance category scores in patients who received therapeutic hypothermia post cardiac arrest. Resuscitation 2012;83:829834, doi:10.1016/j.resuscitation.2011.12.026.CrossRefGoogle ScholarPubMed
23. Garrett, JS, Studnek, JR, Blackwell, T, et al.. The association between intra-arrest therapeutic hypothermia and return of spontaneous circulation among individuals experiencing out of hospital cardiac arrest. Resuscitation 2011;82:2125, doi:10.1016/j.resuscitation.2010.09.473.CrossRefGoogle ScholarPubMed
24. Murnin, M, Sonder, P, Janssens, G, et al.. Patient characteristics, therapy and prognosis determine heat generation in post-cardiac arrest patients receiving therapeutic hypothermia [abstract]. Crit Care Med 2012;40:1328.CrossRefGoogle Scholar
25. Cudnik, MT, Schmicker, RH, Vaillancourt, C, et al.. A geospatial assessment of transport distance and survival to discharge in out of hospital cardiac arrest patients: implications for resuscitation centers. Resuscitation 2010;81:518523, doi:10.1016/j.resuscitation.2009.12.030.CrossRefGoogle ScholarPubMed