Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T00:42:37.532Z Has data issue: false hasContentIssue false

WOUND-INDUCED ANTIXENOTIC RESISTANCE TO FLEA BEETLES, PHYLLOTRETA CRUCIFERAE (GOEZE) (COLEOPTERA: CHRYSOMELIDAE), IN CRUCIFERS1

Published online by Cambridge University Press:  31 May 2012

P. Palaniswamy
Affiliation:
Agriculture Canada Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
R.J. Lamb
Affiliation:
Agriculture Canada Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9

Abstract

Laboratory experiments were conducted to determine the effect of wounding the cotyledons of Sinapis alba L. cv. Ochre, Brassica napus L. cv. Westar, B. rapa L. cv. Tobin, and C8711, a selection from Tobin, on subsequent feeding damage by the flea beetle, Phyllotreta cruciferae (Goeze). Cotyledons of 7-day-old seedlings were wounded either by puncturing them with needles (mechanical wounding) or by exposing them to flea beetles. One, 2, or 9 days following wounding, the wounded and unwounded seedlings were exposed to flea beetles and the feeding damage was estimated as a measure of antixenosis. Mechanical wounding of one of the cotyledons with 96 needle punctures induced a significant reduction in the damage of the unwounded cotyledons of S. alba, 1 or 2 days following wounding. True leaves of the wounded seedlings also showed consistently less damage than unwounded controls, 9 days following wounding. In S. alba, all three levels of mechanical wounding (i.e. 6, 24, or 96 punctures per cotyledon) reduced subsequent flea beetle damage to a similar extent. Wrapping a cotyledon of S. alba with a plastic film produced an effect similar to wounding it with needles. As with mechanical wounding, flea beetle wounding also reduced subsequent flea beetle damage in S. alba. Other plant species (B. napus and B. rapa) tested showed no measurable induced effects on subsequent feeding damage.

Résumé

Des expériences en laboratoire ont servi à déterminer l’effet de blessures aux cotylédons de Sinapis alba L. cv. Ochre, Brassica napus L. cv. Westar, B. rapa L. cv. Tobin et C8711, une variété de Tobin, sur les dommages causés subséquemment par l’alimentation des altises, Phyllotreta cruciferae (Goeze). Les cotylédons de plantules de 7 jours ont été blessés soit en les perçant au moyen d’une aiguille (blessure mécanique), soit en les exposant aux altises. Un, 2 ou 9 jours plus tard, les plantules blessés et les plantules intacts ont été exposés aux altises et les dommages causés par l’activité alimentaire de ces insectes ont servi de mesure de l’antixénose. La perforation de l’un des cotylédons au moyen de 96 coups d’aiguille a entraîné une réduction significative des dommages aux cotylédons sains chez S. alba, 1 ou 2 jours après l’administration des blessures. Les feuilles véritables des plantules blessés étaient aussi significativement moins affectées que les témoins intacts 9 jours après l’administration des blessures. Chez S. alba, les trois types de traitements mécaniques (i.e. 6, 24 ou 96 coups d’aiguille par cotylédon) ont réduit à peu près de la même façon les dommages causés subséquemment par les altises. L’application d’un film de plastique sur un cotylédon de S. alba a produit des effets semblables aux coups d’aiguille. Comme les blessures mécaniques, les blessures causées par les altises elles-mêmes réduisent aussi les dommages éventuels. Sur les autres espèces de plantes (B. napus et B. rapa), les traitements expérimentaux n’ont produit aucun effet mesurable sur les dommages causés par l’alimentation des altises.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldwin, I.T. 1991. Damage-induced alkaloids in wild tobacco. pp. 47–69 in Tallamy, D.W., and Raupp, M.J. (Eds.), Phytochemical Induction by Herbivores. John Wiley & Sons, New York, NY. 431 pp.Google Scholar
Benz, G., and Abivardi, C.. 1991. Preliminary studies on wound- and PIIF-induced resistance in some solanaceous plants against Spodoptera littoralis (Boisd.) (Lep., Noctuidae). Journal of Applied Entomology 111: 349357.Google Scholar
Birch, A.N.E., Griffiths, D.W., and MacFarlane-Smith, W.H.. 1990. Changes in forage and oilseed rape (Brassica napus) root glucosinolates in response to attack by turnip root fly (Delia floralis). Journal of Scientific Food Agriculture 51: 309320.CrossRefGoogle Scholar
Bodnaryk, R.P. 1992. Effect of wounding on glucosinolates in the cotyledons of oilseed rape and mustard. Phytochemistry 31: 26712677.Google Scholar
Bodnaryk, R.P., and Lamb, R.J.. 1991. Mechanisms of resistance to the flea beetle, Phyllotreta cruciferae (Goeze) in yellow mustard seedlings, Sinapis alba L. Canadian Journal of Plant Science 71: 1320.CrossRefGoogle Scholar
Bodnaryk, R.P., and Palaniswamy, P.. 1990. Glucosinolate levels in cotyledons of mustard, Brassica juncea L. and rape, B. napus L. do not determine feeding rates of flea beetle, Phyllotreta crucifera (Goeze). Journal of Chemical Ecology 16: 27352746.CrossRefGoogle ScholarPubMed
Braam, J., and Davis, R.W.. 1990. Rain-, wind-, and touch-induced expression of calmodulin and calmodulinrelated genes in arabidopsis. Cell 60: 357364.Google Scholar
Burgess, L., and Wiens, J.E.. 1980. Dispensing allyl isothiocyanate as an attractant for trapping crucifer-feeding flea beetles. The Canadian Entomologist 112: 9397.Google Scholar
Chiang, H., Norris, D.M., Ciepiela, A., Shapiro, P., and Oosterwyk, A.. 1987. Induced versus constitutive PI227687 soybean resistance to Mexican bean beetle, Epilachna varivestis. Journal of Chemical Ecology 13: 741749.CrossRefGoogle Scholar
Coleman, J.S., and Jones, C.G.. 1991. A phytocentric perspective of phytochemical induction by herbivores. pp. 3–45 in Tallamy, D.W., and Raupp, M.J. (Eds.), Phytochemical Induction by Herbivores. John Wiley & Sons, New York, NY. 431 pp.Google Scholar
Edwards, P.J., Wratten, S.D., and Cox, H.. 1985. Wound-induced changes in the acceptability of tomato to larvae of Spodoptera littoralis: A laboratory bioassay. Ecological Entomology 10: 155158.CrossRefGoogle Scholar
Green, T.R., and Ryan, C.A.. 1973. Wound-induced proteinase inhibitor in tomato leaves: Some effects of light and temperature on the wound response. Plant Physiology 51: 776777.CrossRefGoogle ScholarPubMed
Haukioja, E., and Neuvonen, S.. 1987. Insect population dynamics and induction of plant resistance: The testing of hypotheses. pp. 411–432 in Barbosa, P., and Schultz, J.C. (Eds.), Insect Outbreak. Academic Press, New York, NY. 578 pp.Google Scholar
Hoagland, D.R., and Arnon, D.I.. 1950. The Water-culture Method for Growing Plants Without Soil. California Agricultural Experiment Station Circular 347: 32 pp.Google Scholar
Karban, R. 1985. Resistance against spider mites in cotton induced by mechanical abrasion. Entomologia Experimentalis et Applicata 37: 137141.Google Scholar
Karban, R. 1991. Induced resistance in agricultural systems. pp. 403–419 in Tallamy, D.W., and Raupp, M.J. (Eds.), Phytochemical Induction by Herbivores. John Wiley & Sons, New York, NY. 431 pp.Google Scholar
Karban, R., and Myers, J.H.. 1989. Induced plant responses to herbivory. Annual Review of Ecology and Systematics 20: 331348.CrossRefGoogle Scholar
Kogan, M., and Fischer, D.C.. 1991. Inducible defenses in soybean against herbivorous insects. pp. 347–378 in Tallamy, D.W., and Raupp, M.J. (Eds.), Phytochemical Induction by Herbivores. John Wiley & Sons, New York, NY. 431 pp.Google Scholar
Kogan, M., and Ortman, E.F.. 1978. Antixenosis — a new term proposed to define Painter's “non-preference” modality of resistance. Bulletin of the Entomological Society of America 24: 175176.CrossRefGoogle Scholar
Kogan, M., and Paxton, J.. 1983. Natural inducers of plant resistance to insects. pp. 153–171 in Hedin, P.A., (Ed.), Plant Resistance to Insects. ACS Symposium Series 208: 375 pp. American Chemical Society, Washington, DC.Google Scholar
Koritsas, V.M., Lewis, J.A., and Fenwick, G.R.. 1989. Accumulation of indole glucosinolates in Psylliodes chrysocephala L.-infested or -damaged tissues of oilseed rape (Brassica napus L.). Experientia 45: 493495.Google Scholar
Koritsas, V.M., Lewis, J.A., and Fenwick, G.R.. 1991. Glucosinolate responses of oilseed rape, mustard, and kale to mechanical wounding and infestation by cabbage stem flea beetle (Psylliodes chrysocephala). Annals of Applied Biology 118: 209221.CrossRefGoogle Scholar
Lamb, R.J. 1984. Effects of flea beetles, Phyllotreta spp. (Chrysomelidae: Coleoptera), on the survival, growth, seed yield, and quality of canola, rape, and yellow mustard. The Canadian Entomologist 116: 269280.Google Scholar
Lamb, R.J. 1988. Susceptibility of low- and high-glucosinolate oilseed rapes to damage by flea beetles, Phyllotreta spp. (Coleoptera: Chrysomelidae). The Canadian Entomologist 120: 195196.CrossRefGoogle Scholar
Lamb, R.J. 1989. Entomology of oilseed Brassica crops. Annual Review of Entomology 34: 211229.CrossRefGoogle Scholar
Lamb, R.J., McVetty, P.B.E., Palaniswamy, P., Bodnaryk, R.P., and Jeong, S.E.. 1993. Susceptibility of inbred lines of oilseed rape, Brassica napus, to feeding damage by the flea beetle, Phyllotreta cruciferae, its inheritance. Canadian Journal of Plant Science 73: 615623.CrossRefGoogle Scholar
Lamb, R.J., and Palaniswamy, P.. 1990. Host discrimination by a crucifer-feeding flea beetle, Phyllotreta striolata (F.) (Coleoptera: Chrysomelidae). The Canadian Entomologist 122: 817824.CrossRefGoogle Scholar
Lammerink, J., MacGibbon, D.B., and Wallace, A.R.. 1984. Effect of the cabbage aphid (Brevicoryne brassicae) on total glucosinolate in the seed of oilseed rape (Brassica napus). New Zealand Journal of Agricultural Research 27: 8992.CrossRefGoogle Scholar
Larsen, L., Nielsen, J.K., Ploger, A., and Sorensen, H.. 1985. Responses of some beetle species to varieties of oilseed rape and to pure glucosinolates. pp. 230–244 in Sorensen, H. (Ed.), Advances in the Production and Utilization of Cruciferous Crops. Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht. 317 pp.Google Scholar
Lin, H., Kogan, M., and Fischer, D.. 1990. Induced resistance in soybean to the Mexican bean beetle (Coleoptera: Coccinellidae). Comparisons of inducing factors. Environmental Entomology 19: 18521857.CrossRefGoogle Scholar
Moran, N., and Hamilton, W.D.. 1980. Low nutritive quality as defence against herbivores. Journal of Theoretical Biology 86: 247254.CrossRefGoogle Scholar
Nielsen, J.K. 1978. Host plant relationship of Phyllotreta nemorum L. (Coleoptera: Chrysomelidae). I. Field studies. Zeitschrift für Angewandte Entomologie 84: 396407.CrossRefGoogle Scholar
Nielsen, J.K. 1988. Crucifer-feeding Chrysomelidae: Mechanisms of host plant finding and acceptance. pp. 25–40 in Jolivet, P., Petitpierre, E., and Hsiao, T.H. (Eds.), Biology of Chrysomelidae. Kluwer Academic Publishers. 615 pp.Google Scholar
Palaniswamy, P., and Lamb, R.J.. 1992. Host preferences of flea beetles, Phyllotreta cruciferae and P. striolata (Coleoptera: Chrysomelidae), for crucifer seedlings. Journal of Economic Entomology 85: 743752.CrossRefGoogle Scholar
Palaniswamy, P., Lamb, R.J., and McVetty, P.B.E.. 1992. Screening for antixenosis resistance to flea beetles, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae), in rapeseed and related crucifers. The Canadian Entomologist 124: 895906.CrossRefGoogle Scholar
Ryan, C.A., Bishop, P.D., Graham, J.S., Broadway, R.M., and Duffey, S.S.. 1986. Plant and fungal cell wall fragments activate expression of proteinase inhibitor genes for plant defense. Journal of Chemical Ecology 12: 10251036.CrossRefGoogle ScholarPubMed
SAS Institute Inc. 1985. SAS User's Guide: Statistics, Version 5 Edition. SAS Institute Inc., Cary, NC. 1290 pp.Google Scholar
Shapiro, A.M., and DeVay, J.E.. 1987. Hypersensitivity reaction of Brassica nigra L. (Cruciferae) kills eggs of Pieris butterflies (Lepidoptera: Pieridae). Oecologia 71: 631632.CrossRefGoogle ScholarPubMed
Smith, C.M. 1989. Plant Resistance to Insects: A Fundamental Approach. John Wiley & Sons, New York, NY. 286 pp.Google Scholar
Tallamy, D.W., and Raupp, M.J. (Eds.). 1991. Phytochemical Induction by Herbivores. John Wiley & Sons, New York, NY. 431 pp.Google Scholar
Turgeon, R., and Webb, J.A.. 1971. Growth inhibition by mechanical stress. Science 174: 961962.CrossRefGoogle ScholarPubMed
Walker-Simmons, M., and Ryan, C.A.. 1977. Wound-induced accumulation of trypsin inhibitor activities in plant leaves. Survey of several plant genera. Plant Physiology 59: 437439.CrossRefGoogle ScholarPubMed