Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T07:49:52.295Z Has data issue: false hasContentIssue false

WITHIN- AND AMONG-TREE VARIATION OF THE INDUCED RESPONSE OF LOBLOLLY PINE TO A FUNGUS ASSOCIATED WITH DENDROCTONUS FRONTALIS ZIMMERMANN (COLEOPTERA: SCOLYTIDAE) AND STERILE WOUNDING

Published online by Cambridge University Press:  31 May 2012

T.D. Paine
Affiliation:
Department of Entomology, University of California, Riverside, California, USA 92521
F.M. Stephen
Affiliation:
Department of Entomology, University of Arkansas, Fayetteville, Arkansas, USA 72701
R.G. Cates
Affiliation:
Department of Botany and Range Science, Brigham Young University, Provo, Utah, USA 89602

Abstract

The variation in response to fungal inoculation and sterile wounding within and among Pinus taeda L. was evaluated. The mean fungal-induced lesion size among the 20 trees sampled was 105.8 mm (coefficient of variation of 49.19), compared with a mean lesion size of 19.4 mm (coefficient of variation of 36.40) for the sterile control treatment. Mean lesion size for the fungal inoculation of individual trees ranged from 61 to 192 mm with a range in variances from 10 368.48 to 166.64, and the mean lesion size produced in response to sterile wounding varied from 16 to 26 mm with a range in variances from 254.28 to 0.35. The variance in response to the fungal treatment was on average 16.39-fold greater than the mean compared with only 1.97-fold greater than the mean for the control. There was no relationship between size of responses to either treatment and the position of the sample site on the tree. We suggest that intra-tree variation of the kind demonstrated in earlier studies for the chemical constituents and for physical size of the tree response to invasion may make it very difficult for arriving beetles to assess actual tree susceptibility or suitability for colonization. This may be critical as a component of tree defense in this system where successful reproduction by the insect is dependent on death of the host tree.

Résumé

Les réactions à une inoculation fongique ou à une blessure stérile ont été étudiées chez des Pinus taeda L. et les variations intra-arbre et inter-arbres des réactions ont été évaluées. La taille moyenne d’une lésion infectée parmi les 20 arbres échantillonnés était de 105,8 mm (coefficient de variation de 49,19), alors que la taille moyenne d’une lésion après une blessure stérile n’était que de 19,4 mm (coefficient de variation de 36,40). La taille moyenne des lésions infectées variait de 61 à 192 mm sur des arbres particuliers et l’échelle des variances s’étendait de 10 368,48 à 166,64; dans le cas des blessures stériles, la taille moyenne des lésions variait de 16 à 26 mm et les variances, de 254,28 à 0,35. La variance en réaction au traitement fongique était en moyenne de 16,39 fois plus élevée que la moyenne, alors qu’elle n’était que de 1,97 fois plus élevée que la moyenne dans le cas des témoins. Il n’y avait pas de relation entre la taille des lésions provoquées par l’un ou l’autre traitement et la position de l’échantillon sur l’arbre. Il semble donc que la variation intra-arbre du type qui a été démontré dans le cas de constituants chimiques et du type qui prévaut lors de l’examen de la taille physique de la réaction des arbres à l’invasion rendent très difficiles pour des coléoptères envahisseurs potentiels l’évaluation de la susceptibilité de l’arbre à l’envahissement ou de sa valeur pour une colonisation éventuelle. Ce phénomène constitue probablement un facteur critique de défense de l’arbre dans ce système où la réussite de la reproduction de l’insecte dépend de la mort de l’arbre hôte.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berryman, A.A. 1969. Responses of Abies grandis to attack by Scolytus ventralis (Coleoptera: Scolytidae). The Canadian Entomologist 101: 10331041.CrossRefGoogle Scholar
Berryman, A.A. 1972. Resistance of conifers to invasion by bark beetle fungus associations. BioScience 22: 589602.Google Scholar
Bridges, J.R. 1987. Effects of terpenoid compounds on growth of symbiotic fungi associated with the southern pine beetle. Phytopathology 77: 8385.CrossRefGoogle Scholar
Cates, R.G., and Redak, R.A.. 1988. Variation in the terpene chemistry of douglas-fir and its relationship to western spruce budworm success. pp. 317344in Spencer, K.C. (Ed.), Chemical Mediation of Coevolution. Academic Press, San Diego, CA.Google Scholar
Coulson, R.N., Hennier, P.B., Flamm, R.O., Rykiel, E.J., Hu, L.C., and Payne, T.L.. 1983. The role of lightning in the epidemiology of the southern pine beetle. Zeitschrift fur angewandte Entomologie 96: 182193.CrossRefGoogle Scholar
Coulson, R.N., Pulley, P.E., Pope, D.N., Fargo, W.S., Gagne, J.A., and Kelley, C.L.. 1979. Estimation of survival and allocation of adult southern pine beetles between trees during the development of an infestation. pp. 194212in Berryman, A.A., and Safranyik, L. (Eds.), Dispersal of Forest Insects: Evaluation, Theory, and Management Implications. Proc. IUFRO Symp., Sandpoint, ID.Google Scholar
Gambliel, H.A., Cates, R.G., Caffey-Moquin, M.K., and Paine, T.D.. 1985. Variation in the chemistry of loblolly pine in relation to infection by the blue-stain fungus. pp. 177184in Branham, S.J., and Thatcher, R.C. (Eds.), Integrated Pest Management Research Symposium: The Proceedings. U.S.D.A. Forest Service, General Technical Report SO–56.Google Scholar
Goldhammer, D.S., Stephen, F.M., and Paine, T.D.. 1990. The effect of Ceratocystis minor, Ceratocystis minor var. barrasii, and SJB 122 on reproduction in the southern pine beetle, Dendroctonus frontalis (Coleoptera: Scolytidae). The Canadian Entomologist 122: 407418.CrossRefGoogle Scholar
Hodges, J.D., Elam, W.W., Watson, W.F., and Nebeker, T.E.. 1979. Oleoresin characteristics and susceptibility of four southern pines to southern pine beetle (Coleoptera: Scolytidae) attacks. The Canadian Entomologist 111: 889896.CrossRefGoogle Scholar
Paine, T.D. 1984. Seasonal response of ponderosa pine to inoculation of the mycangial fungi from the western pine beetle. Canadian Journal of Botany 62: 551555.Google Scholar
Paine, T.D., and Stephen, F.M.. 1987. Influence of tree stress and site quality on the induced defense system of loblolly pine. Canadian Journal of Forest Research 17: 569571.CrossRefGoogle Scholar
Paine, T.D., and Stephen, F.M.. 1988. Induced defenses of loblolly pine, Pinus taeda: Potential impact on Dendroctonus frontalis within tree mortality. Entomologia Experimentalis et Applicata 46: 3946.CrossRefGoogle Scholar
Pope, D.N., Coulson, R.N., Fargo, W.S., Gagne, J.A., and Kelly, C.W.. 1980. The allocation process and between-tree survival probabilities in Dendroctonus frontalis infestations. Research in Population Ecology 22: 197210.CrossRefGoogle Scholar
Raffa, K.F., and Berryman, A.A.. 1982 a. Physiological aspects of lodgepole pine wound responses to a fungal symbiont of the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae). The Canadian Entomologist 115: 723734.CrossRefGoogle Scholar
Raffa, K.F., and Berryman, A.A.. 1982 b. Physiological differences between lodgepole pines resistant and susceptible to the mountain pine beetle and associated microorganisms. Environmental Entomology 11: 486492.CrossRefGoogle Scholar
Reid, R.W., Whitney, H.S., and Watson, J.A.. 1967. Reactions of lodgepole pine to attack by Dendroctonus ponderosae Hopkins and blue-stain fungi. Canadian Journal of Botany 45: 11151126.Google Scholar
Shrimpton, D.M. 1973. Extractions associated with wound response of lodgepole pine attacked by the mountain pine beetle and associate microorganisms. Canadian Journal of Botany 51: 527534.CrossRefGoogle Scholar
Shultz, J.C. 1983 a. Impact of variable plant defensive chemistry on susceptibility of insects to natural enemies. pp. 3754in Hedin, P.A., (Ed.), Plant Resistance to Insects. ACS Symposium Series 208. American Chemical Society, Washington, DC.Google Scholar
Shultz, J.C. 1983 b. Habitat selection and foraging tactics of caterpillars in heterogenous trees. pp. 6190in Denno, R.F., and McClure, M.S. (Eds.), Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York, NY.CrossRefGoogle Scholar
Sokal, R.R., and Rohlf, R.J.. 1981. Biometry, 2nd ed. W.H. Freeman and Co., New York, NY. 859 pp.Google Scholar
Stephen, F.M., and Paine, T.D.. 1985. Seasonal patterns of host tree resistance to fungal associates of the southern pine beetle. Zeitschrift fur angewandte Entomologie 99: 113122.Google Scholar
Vite, J.P. 1961. The influence of water supply on oleoresin exudation pressure and resistance to bark beetle attack in Pinus ponderosa. Contributions of the Boyce Thompson Institute 21: 3766.Google Scholar
Whitham, T.G. 1980. The theory of habitat selection: Examined and extended using Pemphigus aphids. American Naturalist 115: 449466.Google Scholar
Whitham, T.G. 1981. Individual trees as heterogenous environments: Adaption to herbivory or epigenetic noise? pp. 927in Denno, R.F., and Dingle, H. (Eds.), Insect Life History Patterns: Habitat and Geographic Variation. Springer-Verlag, New York, NY.Google Scholar
Whitham, T.G. 1983. Host manipulation of parasites: Within plant variation as a defense against rapidly evolving pests. pp. 1541in Denno, R.F., and McClure, M.S. (Eds.), Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York, NY.Google Scholar
Whitham, T.G., and Slobodchikoff, C.N.. 1981. Evolution by individuals, plant-herbivore interactions, and mosaics of genetic variability: The adaptive significance of somatic mutations in plants. Oecologia (Berl.) 49: 287292.Google Scholar
Wong, B.L., and Berryman, A.A.. 1977. Host resistance to the fir engraver beetle. 3. Lesion development and containment of infection by resistant Abies grandis inoculated with Trichosporium symbioticum. Canadian Journal of Botany 55: 23582365.Google Scholar
Wright, L.C., Berryman, A.A., and Gurusiddaiah, S.. 1979. Host resistance to the fir engraver beetle, Scolytus ventralis (Coleoptera: Scolytidae). 4. Effect of defoliation on wound monoterpene and inner bark carbohydrate concentrations. The Canadian Entomologist 111: 12551262.CrossRefGoogle Scholar