Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T08:05:49.916Z Has data issue: false hasContentIssue false

Trophic interactions between three species of cereal aphid (Hemiptera: Aphididae) and spring wheat (Poaceae): implications for pest management1

Published online by Cambridge University Press:  02 April 2012

Samuel M. Migui
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
Robert J. Lamb*
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
*
2 Corresponding author (e-mail: [email protected]).

Abstract

The susceptibilities of genetically diverse Canadian spring wheats, Triticum aestivum L. and Triticum durum Desf., to three aphid species, Rhopalosiphum padi (L.), Sitobion avenae (Fabricius), and Schizaphis graminum (Rondani), were investigated. Trophic interactions measured as changes in biomass of aphids and wheat plants were used to quantify levels of resistance, components of resistance, and impact of aphids on yield. Plants in field cages were infested with small numbers of aphids for 21 days at heading. These plants were usually more suitable for the development of S. avenae and S. graminum than of R. padi. Partial resistance, measured as seed production by infested plants as a proportion of that by a control, varied from 11% to 59% for different aphid species and wheat classes when all wheat plants were infested at the same stage. Cultivars within wheat classes responded similarly to each of the aphid species. None of the wheat cultivars showed agriculturally effective levels of antibiosis. The specific impact of each aphid species and wheat class varied from 5 to 15 mg of plant biomass lost for each milligram of biomass gained by the aphids. Canadian Western Red Spring wheat had a lower specific impact and therefore was more tolerant to aphids than the other two classes, but not tolerant enough to avoid economic damage at the aphid densities observed. Plants did not compensate for feeding damage after aphid feeding ceased, based on the higher specific impacts observed for mature plants than for plants that were heading. The interactions between aphids and plants show that current economic thresholds probably underestimate the damage caused by cereal aphids to Canadian spring wheat.

Résumé

Nous avons étudié la vulnérabilité des blés de printemps canadiens, Triticum aestivum L. et Triticum durum Desf., à forte diversité génétique à l’attaque par trois espèces de pucerons, Rhopalosiphum padi (L.). Sitobion avenae (Fabricius) et Schizaphis graminum (Rondani). Les interactions trophiques, sous forme de changements de biomasse des pucerons et des plants de blé, ont servi à quantifier les niveaux de résistance, les composantes de la résistance et l’impact des pucerons sur le rendement. Nous avons infesté des plants dans des cages de terrain avec un petit nombre de pucerons pendant 21 jours au moment de la formation de l’épi. Ces plants sont généralement plus favorables au développement de S. avenae et de S. graminum que de R. padi. La résistance partielle, d’après la production de graines par les plants infestés par rapport à celle des plants témoins, varie de 11 % à 59 % selon les différentes espèces de pucerons et de classes de blé, lorsque tous les plants sont infestés au même stade. Au sein de chaque classe de blé, les cultivars réagissent de façon semblable à chacune des espèces de pucerons. Aucun des cultivars de blé ne montre de niveau d’antibiose d’efficacité agricole. L’impact spécifique de chaque espèce de puceron sur les classes de blé se traduit par une perte de 5 à 15 mg de tissu de plante pour chaque mg de gain de masse des pucerons. La classe de blé Canadian Western Red Spring subit un impact spécifique plus faible et est donc plus tolérante aux pucerons que les autres classes, mais pas suffisamment pour éviter des dommages d’importance économique aux densités de pucerons observées. Une fois l’alimentation des pucerons terminée, les plants ne font pas de compensation pour les dommages causés par cette alimentation, puisque les impacts spécifiques observés chez les plants à maturité sont supérieurs à ceux des plants qui sont au stade de la formation de l’épi. Les interactions entre les pucerons et les plants indiquent que les seuils économiques couramment utilisés sous-estiment probablement les dommages causés par les pucerons des céréales au blé de printemps canadien.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Contribution No. 1957 of the Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, Manitoba.

References

Acreman, T.M., and Dixon, A.F.G. 1986. The role of awns in the resistance of cereals to the grain aphid, Sitobion avenae. Annals of Applied Biology, 109:375381.CrossRefGoogle Scholar
Agriculture and Agri-Food Canada. 1996. Cereal varieties released by the Cereal Research Centre. Cereal Research Centre, Winnipeg, Manitoba.Google Scholar
Ba-Angood, S.A., and Stewart, R.K. 1980. Effect of cereal aphid infestation on grain yield and percentage protein of barley, wheat, and oats in southwestern Quebec. The Canadian Entomologist, 112:681686.CrossRefGoogle Scholar
Berzonsky, W.A., Ding, H., Haley, S.D., Harris, M.O., Lamb, R.J., McKenzie, R.I.H., Ohm, H.W., Patterson, F.L., Pearis, F.B., Porter, D.R., Ratcliffe, R.H., and Shanower, T.G. 2003. Breeding wheat for resistance to insects. Plant Breeding Reviews, 22: 221296.Google Scholar
Boeve, P.J., and Weiss, M.J. 1997. Binomial sampling plans for cereal aphids (Homoptera: Aphididae) in spring wheat. Journal of Economic Entomology, 90:967975.CrossRefGoogle Scholar
Gavloski, J.E., and Lamb, R.J. 2000. Specific impacts of herbivores: comparing diverse insect species on young plants. Environmental Entomology, 29:17.CrossRefGoogle Scholar
Harper, A.M. 1973. English grain aphid: effect on yield of wheat in Alberta. Journal of Economic Entomology, 66: 1326.CrossRefGoogle Scholar
Hatchett, J.H., Starks, K.J., and Webster, J.A. 1987. Insect and mite pests of wheat. In Wheat and wheat improvement. Edited by Heyne, E.G.. Agronomy Monograph. No. 13. 2nd ed. American Agronomy Society, Madison, Wisconsin. pp. 625675.Google Scholar
Havlíčková, H. 1993. Level and nature of the resistance to the cereal aphid, Sitobion avenae (F.), in thirteen winter wheat cultivars. Journal of Agronomy and Crop Science, 171:133137.CrossRefGoogle Scholar
Hesler, L.S., Riedell, W.E., Kieckhefer, R.W., Haley, S.D., and Collins, R.D. 1999. Resistance to Rhopalosiphum padi(Homoptera: Aphididae) in wheat germplasm accessions. Journal of Economic Entomology, 92:12341238.CrossRefGoogle Scholar
Johnston, R.L., and Bishop, G.W. 1987. Economic injury levels and economic thresholds for cereal aphids (Homoptera: Aphididae) on spring-planted wheat. Journal of Economic Entomology, 80: 478482.CrossRefGoogle Scholar
Kieckhefer, R.W., and Gellner, J.L. 1988. Influence of plant growth stage on cereal aphid reproduction. Crop Science, 28: 688690.CrossRefGoogle Scholar
Kieckhefer, R.W., and Kantack, B.H. 1980. Losses in yield in spring wheat in South Dakota caused by cereal aphids. Journal of Economic Entomology, 73: 582585.CrossRefGoogle Scholar
Lamb, R.J., and MacKay, P.A. 1995. Tolerance of antibiotic and susceptible cereal seedlings to the aphids Metopolophium dirhodum and Rhopalosiphum padi. Annals of Applied Biology, 127: 573583.CrossRefGoogle Scholar
MacKay, P.A., and Lamb, R.J. 1996. Dispersal of five aphids (Homoptera: Aphididae) in relation to their impact on Hordeum vulgare. Environmental Entomology, 25: 10321044.CrossRefGoogle Scholar
Maiteki, G.A., and Lamb, R.J. 1985. Spray timing and economic threshold for the pea aphid, Acyrthosiphon pisum (Homoptera: Aphididae), on field peas in Manitoba. Journal of Economic Entomology, 78: 14491454.CrossRefGoogle Scholar
Manitoba Agriculture. 2001. Guide to crop protection 2001. Manitoba Agriculture and Food, Winnipeg, Manitoba.Google Scholar
Migui, S.M. 1996. Dispersal of aphids (Homoptera: Aphididae) within and between cereal fields. M.Sc. thesis, University of Manitoba, Winnipeg, Manitoba.Google Scholar
Migui, S.M., and Lamb, R.J. 2003. Patterns of resistance to three aphid species among wheats in the genus Triticum (Poaceae). Bulletin of Entomological Research, 93: 323333.CrossRefGoogle Scholar
Migui, S.M., and Lamb, R.J. 2004. Seedling and adult plant resistance to Sitobion avenae (Hemiptera: Aphididae) in Triticum monococcum (Poaceae), an ancestor of wheat. Bulletin of Entomological Research, 94: 3546.CrossRefGoogle ScholarPubMed
Migui, S.M., and Lamb, R.J. 2006. Sources of variation in the interaction between three cereal aphids (Hemiptera: Aphididae) and wheat (Poaceae). Bulletin of Entomological Research, 96: 235241.CrossRefGoogle ScholarPubMed
Poehlman, J.M., and Sleper, D.A. 1995. Breeding field crops. 4th ed. Iowa State University Press, Ames, Iowa.Google Scholar
Porter, D.R., Burd, J.D., Shufran, K.A., Webster, J.A., and Teetes, G.L. 1997. Greenbug (Homoptera: Aphididae) biotypes: selected by resistant cultivars or preadapted opportunists? Journal of Economic Entomology, 90: 10551065.CrossRefGoogle Scholar
Porter, D.R., Burd, J.D., Shufran, K.A., and Webster, J.A. 2000. Efficacy of pyramiding greenbug (Homoptera: Aphididae) resistance genes in wheat. Journal of Economic Entomology, 90: 10551065.CrossRefGoogle Scholar
Rajaram, S., and Braun, H.J. 2001. Half a century of international wheat breeding. In Wheat taxonomy: the legacy of John Percival. The Linnean Special Edition Issue No. 3. Edited by Caligari, P.D.S. and Brandham, P.E.. Academic Press, London, England. pp. 137163.Google Scholar
Roberts, J.J., and Foster, J.E. 1983. Effect of leaf pubescence in wheat on the bird cherry oat aphid (Homoptera: Aphididae). Journal of Economic Entomology, 76: 13201322.CrossRefGoogle Scholar
Robinson, A.G., and Hsu, S.J. 1963. Host plant records and biology of aphids on cereal grains and grasses in Manitoba. The Canadian Entomologist, 95: 134137.CrossRefGoogle Scholar
SAS Institute Inc. 1989. SAS/STAT® user's guide. Version 6. 4th ed. Vols. 1 and 2. SAS Institute Inc., Cary, North Carolina.Google Scholar
Tottman, D.R., and Makepeace, R.J. 1979. An explanation of the decimal code for the growth stages of cereals, with illustrations. Annals of Applied Biology, 93: 221234.CrossRefGoogle Scholar
Vickerman, G.P., and Wratten, S.D. 1979. The biology and pest status of cereal aphids (Hemiptera: Aphididae) in Europe: a review. Bulletin of Entomological Research, 69: 132.CrossRefGoogle Scholar
Wise, I.L., Lamb, R.J., and Kenaschuk, E.O. 1995. Effects of the potato aphid Macrosiphum euphorbiae (Thomas) (Homoptera: Aphididae) on oilseed flax, and stage-specific thresholds for control. The Canadian Entomologist, 127: 213224.CrossRefGoogle Scholar
Wiseman, B.R. 1994. Plant resistance to insects in integrated pest management. Plant Disease, 78: 927932.CrossRefGoogle Scholar
Wood, E.A. Jr., 1965. Effect of foliage infestation of the English grain aphid on yield of Triumph wheat. Journal of Economic Entomology, 58: 778779.CrossRefGoogle Scholar
Zuniga, E. 1991. Biological control of cereal aphids in South America. In Proceedings of a Symposium on Aphid-Plant Interactions: Populations to Molecules, Stillwater, Oklahoma, 12–17 August 1990. Edited by Peters, D.C., Webster, J.A., and Chlouber, C.S.. MP-132, Agricultural Experiment Station, Oklahoma State University, Stillwater, Oklahoma. p. 257.Google Scholar