Hostname: page-component-cc8bf7c57-pd9xq Total loading time: 0 Render date: 2024-12-10T14:14:37.230Z Has data issue: false hasContentIssue false

Tree size and growth history predict breeding densities of Douglas-fir beetles in fallen trees

Published online by Cambridge University Press:  31 May 2012

M.L. Reid*
Affiliation:
Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
S.S. Glubish
Affiliation:
Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*
1 Author to whom all correspondence should be addressed (E-mail: [email protected]).

Abstract

For bark beetles (Coleoptera: Scolytidae) breeding in fallen trees, the tree characteristics that are associated with higher breeding densities are poorly known. The breeding densities of Douglas-fir beetles, Dendroctonus pseudotsugae Hopkins, in freshly felled Douglas-fir, Pseudotsugae menziesii (Mirb.) Franco, were examined with respect to tree diameter, phloem thickness, and several measures of tree growth rate over the past year to 10 years prior to tree death. Trees were felled in 8 decks of 3–12 trees to provide a range of tree qualities in a given location. Stepwise regression revealed that of the tree characteristics measured, only diameter was needed to explain the density of beetle attacks on trees within decks. Because diameter, phloem thickness, and growth-increment measures were all highly correlated, attack density also increased with phloem thickness and growth rate prior to felling when these measures were analyzed individually. The apparent preference for larger trees with thicker phloem is consistent with published results for live trees, but the positive effect of tree growth rate prior to death is contrary to results for beetles attacking live trees. Thus, assessments of stand susceptibility to bark beetles based on tree growth rate may differ depending on whether beetles are initially breeding in live or dead trees.

Résumé

Chez les scolytes (Coleoptera : Scolytidae) qui se reproduisent dans les arbres tombés, les caractéristiques des arbres qui donnent lieu aux densités plus élevées sont mal connues. La densité des reproducteurs du Dendroctone du Douglas, Dendroctonus pseudotsugae Hopkins, dans des sapins de Douglas, Pseudotsugae menziesii (Mirb.) Franco, fraîchement abattus, a été examinée en fonction du diamètre de l’arbre, de l’épaisseur du phloème et de mesures diverses du taux de croissance de l’arbre depuis l’année antérieure jusqu’à 10 ans avant sa mort. Les arbres ont été abattus en paquets de 3 à 12, de façon à offrir une variété de conditions à un site donné. Une régression pas à pas a révélé que, parmi toutes les caractéristiques des arbres mesurées, le diamètre peut à lui seul expliquer la densité des infestations de dendroctones dans les groupes d’arbres. Comme le diamètre de l’arbre, l’épaisseur du phloème et les mesures de l’accroissement sont toutes des variables fortement reliées, la densité des infestations augmente aussi avec l’épaisseur du phloème et avec le taux de croissance juste avant l’abattage, lorsque ces mesures sont analysées individuellement. La préférence apparente des dendroctones pour des arbres à phloème épais s’accorde avec les résultats publiés dans le cas d’arbres vivants, mais l’effet positif du taux de croissance de l’arbre avant sa mort est contraire aux résultats obtenus chez les scolytes qui s’attaquent aux arbres vivants. Donc, les estimations de la vulnérabilité des arbres aux attaques de dendroctones basées sur le taux de croissance des arbres peuvent différer selon que les dendroctones entreprennent leur reproduction dans des arbres vivants ou des arbres morts.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amman, G.D. 1972. Mountain pine beetle brood production in relation to thickness of lodgepole pine phloem. Journal of Economic Entomology 65: 138–40CrossRefGoogle Scholar
Amman, G.D., McGregor, M.D., Schmitz, R.F., Oakes, R.D. 1988. Susceptibility of lodgepole pine to infestation by mountain pine beetles following partial cutting of stands. Canadian Journal of Forest Research 18: 688–95CrossRefGoogle Scholar
Bakke, A. 1989. The recent Ips typographus outbreak in Norway—experience from a control program. Holarctic Ecology 12: 515–9Google Scholar
Berryman, A.A. 1976. Theoretical explanation of mountain pine beetle dynamics in lodgepole pine forests. Environmental Entomology 5: 1225–33CrossRefGoogle Scholar
Birgersson, G. 1989. Host tree resistance influencing pheromone production in Ips typographus (Coleoptera: Scolytidae). Holarctic Ecology 12: 451–6Google Scholar
Cabrera, H. 1978. Phloem structure and development in lodgepole pine. pp 5463in Berryman, A.A., Amman, G.D., Stark, R.W., Kibbee, D.L. (Eds), Theory and practice of mountain pine beetle management in lodgepole pine forests. Moscow: College of Forest Resources, University of IdahoGoogle Scholar
Cole, W.E. 1981. Some risks and causes of mortality in mountain pine beetle populations: a long-term analysis. Researches in Population Ecology 23: 116–44CrossRefGoogle Scholar
Gries, G., Bowers, W.W., Gries, R., Noble, M., Borden, J.H. 1990. Pheromone production by the pine engraver Ips pini following flight and starvation. Journal of Insect Physiology 36: 819–24CrossRefGoogle Scholar
Haack, R.A., Wilkenson, R.C., Foltz, J.L. 1987. Plasticity in life-history traits of the bark beetle Ips calligraphus as influenced by phloem thickness. Oecologia 72: 32–8CrossRefGoogle ScholarPubMed
Hard, J.S. 1985. Spruce beetles attack slowly growing spruce. Forest Science 31: 839–50Google Scholar
Herms, D.A., Mattson, W.J. 1992. The dilemma of plants: to grow or defend. Quarterly Review of Biology 67: 283335CrossRefGoogle Scholar
Koricheva, J., Larsson, S., Haukioja, E. 1998. Insect performance on experimentally stressed woody plants: a meta-analysis. Annual Review of Entomology 43: 195216CrossRefGoogle ScholarPubMed
Lessard, E.D., Schmid, J.M. 1990. Emergence, attack densities, and host relationships for the Douglas-fir beetle (Dendroctonus pseudotsugae Hopkins) in northern Colorado. Great Basin Naturalist 50: 333–8Google Scholar
Marsden, M.A., Eav, B.B., Thompson, M.K. 1993. User's guide to the Douglas-fir impact model. USDA Forest Service General Technical Report RM–250Google Scholar
Mitchell, R.G., Preisler, H.K. 1991. Analysis of spatial patterns of lodgepole pine attacked by outbreak populations of the mountain pine beetle. Forest Science 37: 1390–408Google Scholar
Negron, J.F. 1998. Probability of infestation and extent of mortality associated with the Douglas-fir beetle in the Colorado Front Range. Forest Ecology and Management 107: 7185CrossRefGoogle Scholar
Paine, T.D., Baker, F.A. 1993. Abiotic and biotic predisposition. pp 6179in Schowalter, T., Filip, G. (Eds), Beetle–pathogen interactions in conifer forests. New York: Academic PressGoogle Scholar
Price, P.W. 1991. The plant vigor hypothesis and herbivore attack. Oikos 62: 244–51CrossRefGoogle Scholar
Raffa, K.F., Phillips, T.W., Salom, S.M. 1993. Strategies and mechanisms of host colonization by bark beetles. pp 103–28 in Schowalter, T., Filip, G. (Eds), Beetle–pathogen interactions in conifer forests. New York: Academic PressGoogle Scholar
Redak, R.A., Cates, R.G. 1984. Douglas-fir (Pseudotsugae menziesii) – spruce budworm (Choristoneura occidentalis) interactions: the effect of nutrition, chemical defenses, tissue phenology, and tree physical parameters on budworm success. Oecologia 62: 61–7CrossRefGoogle ScholarPubMed
Reid, M.L., Robb, T. 1999. Death of vigorous trees benefits bark beetles. Oecologia 120: 555–62CrossRefGoogle ScholarPubMed
Reynolds, K.M., Holsten, E.H. 1994. Relative importance of risk factors for spruce beetle outbreaks. Canadian Journal of Forest Research 24: 2089–95CrossRefGoogle Scholar
Rudinsky, J.A. 1966. Host selection and invasion by the Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins, in coastal Douglas-fir forests. The Canadian Entomologist 98: 98111CrossRefGoogle Scholar
Safranyik, L. 1995. Bark beetles. pp 155–63 in Armstrong, J.A., Ives, W.G.H. (Eds), Forest insect pests in Canada. Ottawa: Canadian Forest Service, Natural Resources CanadaGoogle Scholar
SAS Institute Inc. 1997. JMP 3.2.2 statistical software. Cary, North Carolina: SAS Institute IncGoogle Scholar
Shepherd, R.F. 1966. Factors influencing the orientation and rates of activity of Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). The Canadian Entomologist 98: 507–18CrossRefGoogle Scholar
Shore, T.L., Safranyik, L., Riel, W.G., Ferguson, M., Castonguay, J. 1999. Evaluation of factors affecting tree and stand susceptibility to the Douglas-fir beetle (Coleoptera: Scolytidae). The Canadian Entomologist 131: 831–9CrossRefGoogle Scholar
Shrimpton, D.M., Thomson, A.J. 1983. Growth characteristics of lodgepole pine associated with the start of mountain pine beetle outbreaks. Canadian Journal of Forest Research 13: 137–44CrossRefGoogle Scholar
Van Hees, W.W.S., Holsten, E.H. 1994. An evaluation of selected spruce bark beetle infestation dynamics using point in time extensive inventory data, Kenai Peninsula, Alaska. Canadian Journal of Forest Research 24: 246–51CrossRefGoogle Scholar
Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs 6Google Scholar
Wright, L.C., Berryman, A.A., Wickman, B.E. 1984. Abundance of the fir engraver, Scolytus ventralis, and the Douglas-fir beetle, Dendroctonus pseudotsugae, following tree defoliation by the Douglas-fir tussock moth, Orgyia pseudotsuga. The Canadian Entomologist 116: 293305CrossRefGoogle Scholar