Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T17:39:48.173Z Has data issue: false hasContentIssue false

TOXICITY OF BACILLUS THURINGIENSIS VAR. KURSTAKI TO AQUATIC INSECTS

Published online by Cambridge University Press:  31 May 2012

D.C. Eidt
Affiliation:
Maritimes Forest Research Centre, Canadian Forestry Service, PO Box 4000, Fredericton, New Brunswick, Canada E3B 5P7

Abstract

Representative aquatic insects, larvae of Simuliidae, Chironomidae, Trichoptera, Megaloptera, and nymphs of Ephemeroptera and Plecoptera, were tested for susceptibility to continuous exposure to Bacillus thuringiensis Berliner var. kurstaki at 4.3, 43, and 430 IU/mL. Only Simulium vittatum was affected, and at the highest concentration. Effects on other organisms, particularly Prosimulium fuscum/mixtum, were suggested. The lowest of the concentrations tested was twice the worst-case transitory concentration peaks expected in water from aerial forest spraying at 30 BIU/ha. Spray buffer zones around water bodies are unnecessary at this spray rate.

Résumé

On a mesuré la vulnérabilité d'insectes aquatiques représentatifs, de larves de simuliidés, de chironomidés, de trichoptères, de mégaloptères, et de nymphes d'éphéméroptères et de plécoptères à une exposition ininterrompue à 4,3, à 43 et à 430 U.I./mL de Bacillus thuringiensis Berliner var. kurstaki. Seul Simulium vittatum a souffert, à la concentration la plus élevée. Des effets sur d'autres insectes furent suggérés, en particulier sur Prosimulium fuscum/mixtum. La plus faible des concentrations utilisées était 2 fois supérieure à la pire concentration transitoire prévue dans l'eau suite à un épandage aérien de 30 × 109 U.I./ha. A cette dose, il n'est pas nécessaire de prévoir de zones tampons autour des étendues d'eau.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buckner, C.H., Kingsbury, P.D., McLeod, B.B., Mortenstem, K.L., and Ray, D.G.H.. 1974. Impact of aerial treatment on non-target organisms, Algonquin Park, Ontario, and Spruce Woods, Manitoba. Section F, 72 pp. in Evaluation of commercial preparations of Bacillus thuringiensis with and without chitinase against spruce budworm. Chemical Control Research Institute, Inf. Rep. CC-X-59.Google Scholar
Busvine, J.R. 1971. A critical review of the techniques for testing insecticides. Commonwealth Agricultural Bureaux, London. 345 pp.Google Scholar
Doane, C.C., and Hitchcock, S.W.. 1964. Field tests with an aerial application of Bacillus thuringiensis. Connecticut Agric. Exp. Stn. Bull. 665. 20 pp.Google Scholar
Eco-Analysts Inc. 1981. The effects of Bacillus thuringiensis on Trichoptera. pp. 134163in Environmental monitoring reports from the 1981 Maine Co-operative Spruce Budworm Suppression Project. Maine Forest Service, Augusta, Maine.Google Scholar
Fast, P.G. 1981. The crystal toxin of Bacillus thuringiensis. pp. 223248in Burges, H.D. (Ed.), Microbial control of pests and plant diseases 1970–1980. Academic Press, London.Google Scholar
Fast, P.G., and Dimond, J.B.. 1984. Susceptibility of larval instars of spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae), to Bacillus thuringiensis. Can. Ent. 116: 131137.CrossRefGoogle Scholar
Fast, P.G., and Régnière, J.. 1984. Effect of exposure time to Bacillus thuringiensis on mortality and recovery of the spruce budworm (Lepidoptera: Tortricidae). Can. Ent. 116: 123130.CrossRefGoogle Scholar
Kingsbury, P.D. 1983. Introduction. pp. 18in Kingsbury, P.D. (Ed.), Permethrin in New Brunswick salmon nursery streams. Forest Pest Management Institute, Report FPM-X-52.Google Scholar
Kingsbury, P.D., and Sarrazin, R.. 1975. Aquatic fauna. pp. 80100in Studies of the environmental impact of the 1974 spruce budworm control operation in Quebec. Chemical Control Research Institute, Report CC-X-93.Google Scholar
Krieg, A., and Langenbruch, G.A.. 1981. Susceptibility of arthropod species to Bacillus thuringiensis. Appendix 1, pp. 837896in Burges, H.D. (Ed.), Microbial control of pests and plant diseases 1970–1980. Academic Press, London.Google Scholar
Lacey, L.A., and Mulla, M.S.. 1977. Evaluation of Bacillus thuringiensis as a biocide of blackfly larvae (Diptera: Simuliidae). J. Invertebr. Path. 30: 4649.CrossRefGoogle ScholarPubMed
Lacey, L.A., Mulla, M.S., and Dulmage, H.T.. 1978. Some factors affecting the pathogenicity of Bacillus thuringiensis Berliner against blackflies. Environ. Ent. 7: 583588.CrossRefGoogle Scholar
MacDonald, P. 1980. Effect of Bacillus thuringiensis spraying on aquatic fauna. Appendix 8 in Smith, T.D. et al. , (Eds.), An experiment with Thuricide 16B for the reduction of population densities of spruce budworm (Choristoneura fumiferana (Clemens, 1865) (Lepidoptera: Tortricidae), Nova Scotia, 1979. [Report to the Minister of Lands and Forests.]Google Scholar
NRCC 1976. Bacillus thuringiensis: its effects on environmental quality. National Research Council of Canada, Associate Committee on Scientific Criteria for Environmental Quality. NRCC No. 15385. 133 pp.Google Scholar
Pistrang, L.A., and Burger, J.F.. 1984. Effect of Bacillus thuringiensis var. israelensis on a genetically-defined population of black flies (Diptera: Simuliidae) and associated insects in a montane New Hampshire stream. Can. Ent. 116: 975981.CrossRefGoogle Scholar
Retnakaran, A., Lauzon, H., and Fast, P.. 1983. Bacillus thuringiensis induced anorexia in the spruce budworm, Choristoneura fumiferana. Ent. exp. appl. 34: 233239.CrossRefGoogle Scholar
Symons, P.E.K. 1977. Dispersal and toxicology of the insecticide fenitrothion; predicting hazards of forest spraying. Resid. Rev. 38: 136.Google Scholar