Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T05:53:01.115Z Has data issue: false hasContentIssue false

TEMPORAL AND VERTICAL DISTRIBUTION OF BARK BEETLES (COLEOPTERA: SCOLYTIDAE) CAPTURED IN BARRIER TRAPS AT BAITED AND UNBAITED LODGEPOLE PINES THE YEAR FOLLOWING ATTACK BY THE MOUNTAIN PINE BEETLE

Published online by Cambridge University Press:  31 May 2012

L. Safranyik*
Affiliation:
Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Bumside Road, Victoria, British Columbia, Canada V8Z 1M5
D.A. Linton
Affiliation:
Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Bumside Road, Victoria, British Columbia, Canada V8Z 1M5
T.L. Shore
Affiliation:
Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Bumside Road, Victoria, British Columbia, Canada V8Z 1M5
*
1 Author to whom all correspondence should be addressed (E-mail: [email protected]).

Abstract

Bark beetles were trapped for two summers in a mature stand of lodgepole pine, Pinus contorta var. latifolia Engelmann (Pinaceae), infested by mountain pine beetle, Dendroctonus ponderosae Hopkins, near Princeton, British Columbia. Columns of flight-barrier traps were suspended next to uninfested live trees and from dead brood trees containing new adult beetles. The brood trees had been treated in the previous year with mountain pine beetle pheromone bait alone or in combination with Ips pini Say (Coleoptera: Scolytidae) pheromone bait and subsequently killed by mountain pine beetles. A total of 3376 individuals from 30 species of Scolytidae were captured in the traps. Most of the species for which lodgepole pine is a nonhost or occasional host were captured in low numbers (one or two specimens). The most abundant species (> 30 individuals) were D. ponderosae, I. pini, Hylurgops porosus LeConte, Pityogenes knechteli Swaine, and Trypodendron lineatum Olivier. The treatments affected captures of mountain pine beetles and I. pini but only in the year when trees were either unbaited or baited simultaneously for mountain pine beetle and I. pini. There were significant differences among the five most abundant species in the mean heights and mean Julian dates of capture. In addition to host condition requirements, these differences reflected partitioning of the food and habitat resource and competitive interactions among species. There was no interaction between treatment and trap height, indicating that treatment did not affect the height distribution of flying beetles.

Résumé

Les scolytes ont été capturés au cours de deux saisons estivales dans une forêt de pins tordus latifoliés (Pinus contorta var. latifolia) et d’épinettes d’Engelmann (Pinaceae) matures infestés par le Dendroctone du pin argenté (Dendroctonus ponderosae Hopkins). La forêt est située près de Princeton, en Colombie-Britannique. Des colonnes de pièges (pour le piégeage en vol) ont été suspendues à côté d’arbres sains (non infestés) et à des arbres foyers morts abritant une nouvelle génération d’insectes adultes. Les arbres foyers avaient été traités l’année précédente avec un appât à base de phéromones du Dendroctone du pin argenté, seul ou combiné à un appât à base de phéromones du Ips pini Say (Coleoptera : Scolytidae), à la suite de quoi ces arbres avaient été tués par les dendroctones. Un total de 3376 spécimens appartenant à 30 espèces différentes de scolytes ont été capturés dans les pièges. La plupart des espèces qui ne parasitent pas le Pin tordu latifolié ou ne le font qu’occasionnellement ont été capturées en faible nombre (un ou deux spécimens). Les espèces les plus abondantes (plus de 30 représentants) étaient D. ponderosae, I. pini, Hylurgops porosus LeConte, Pityogenes knechteli Swaine et Trypodendron lineatum Olivier. Les traitements n’ont affecté les captures de dendroctones du pin argenté et de I. pini que lorsque les arbres n’avaient pas été appâtés ou avaient été appâtés simultanément pour le Dendroctone du pin argenté et I. pini. On a constaté des différences importantes entre les espèces les plus abondantes pour ce qui est des hauteurs moyennes et des dates juliennes moyennes de capture. Ces différences reflétaient la diversité des exigences concernant la condition de l’hôte mais aussi la séparation des ressources alimentaires et de l’habitat ainsi qu’une compétition entre les différentes espèces. On n’a observé aucun lien entre le traitement et la hauteur du piège, ce qui montre que le traitement n’a pas affecté la distribution verticale des insectes en vol.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avis, R.W. 1971. Flight, landing and attack patterns of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). B.Sci.For. thesis, The University of British Columbia, VancouverGoogle Scholar
Bright, D.E. Jr. 1976. The bark beetles of Canada and Alaska. Coleoptera: Scolytidae. Canada Department of Agriculture, Biosystematic Research Institute, Research Branch Publication 1576Google Scholar
Hopping, G.R. 1961. Insects injurious to lodgepole pine in the Canadian Rocky Mountain region. pp. 7787in Smithers, L.A. (Ed), Lodgepole pine in Alberta. Canada Department of Forestry Bulletin 127Google Scholar
Hunt, D.W.A., Borden, J.H. 1988. Response of mountain pine beetle, Dendroctonus ponderosae Hopkins, and Pine engraver, Ips pini (Say), to Ipsdienol in southwestern British Columbia. Journal of Chemical Ecology 14: 277–93CrossRefGoogle ScholarPubMed
Poland, T.M. 1993. Interspecific interactions between Ips pini Say and Pityogenes knechteli Swaine in lodgepole pine. M.P.M. thesis, Simon Fraser University, Burnaby, British ColumbiaGoogle Scholar
Reid, R.W. 1955. Bark beetle complex associated with lodgepole pine slash in Alberta. The Canadian Entomologist 87: 311–23CrossRefGoogle Scholar
Safranyik, L. 1971. Some characteristics of the spatial arrangement of attacks by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae), on lodgepole pine. The Canadian Entomologist 103: 1607–25CrossRefGoogle Scholar
Safranyik, L. 1978. Effects of climate and weather on mountain pine beetle populations. pp. 7786in Kibbee, D.L., Amman, G.D., Berryman, A.A., Stark, R.W. (Eds), Theory and Practice of Mountain Pine Beetle Management in Lodgepole Pine Forests, Proceedings of a Symposium at Washington State University, Pullman, Washington, 25–27 April 1978Google Scholar
Safranyik, L., Linton, D.A. 1993. Relationship between catches in flight and emergence traps of the mountain pine beetle, Dendroctonus ponderosae Hopk. (Col.: Scolytidae). Journal of the Entomological Society of British Columbia 90: 5361Google Scholar
Safranyik, L., Linton, D.A. 1998. Mortality of mountain pine beetle larvae, Dendroctonus ponderosae (Coleoptera: Scolytidae), in logs of lodgepole pine (Pinus contorta var. latifolia) at constant low temperatures. Journal of the Entomological Society of British Columbia 90: 81–8Google Scholar
Safranyik, L., Shrimpton, D.M., Whitney, H.S. 1974. Management of lodgepole pine to reduce losses from the mountain pine beetle. Environment Canada, Canadian Forestry Service, Forestry Technical Report 1Google Scholar
Safranyik, L., Linton, D.A., Silversides, R., McMullen, L.H. 1992. Dispersal of released mountain pine beetles under the canopy of a mature lodgepole pine stand. Journal of Applied Entomology 113: 441–50CrossRefGoogle Scholar
Safranyik, L., Shore, T.L., Linton, D.A. 1996. Ipsdienol and lanierone increase Ips pini Say (Coleoptera: Scolytidae) attack and brood density in lodgepole pine infested by mountain pine beetle. The Canadian Entomologist 128: 199207Google Scholar
Safranyik, L., Shore, T.L., Linton, D.A., Rankin, L. 1999. Effects of induced competitive interactions with secondary bark beetle species on establishment and survival of mountain pine beetle broods. Natural Resources Canada, Canadian Forest Service Information Report BC–X–384Google Scholar
Savoie, A. 1996. Chemical ecology of Pityogenes knechteli Swaine (Coleoptera: Scolytidae) and interaction with other secondary bark beetles. M.P.M. thesis, Simon Fraser University, Burnaby, British ColumbiaGoogle Scholar
Schmitz, R.F., McGregor, M.D., Amman, G.D. 1980. Mountain pine beetle response to lodgepole pine stands of different characteristics. pp. 234–43 in Berryman, A.A., Safranyik, L. (Eds), Dispersal of Forest Insects: Evaluation, Theory and Management Implications, Proceedings of the 2nd IUFRO Conference, 27–31 August 1979. Sandpoint, Idaho, and Pullman, Washington. Pullman: Washington State University Cooperative Extension ServiceGoogle Scholar
Shore, T.L., McLean, J.A. 1984. The effect of height of pheromone-baited traps on catches of the ambrosia beetle Trypodendron lineatum. Journal of the Entomological Society of British Columbia 81: 1718Google Scholar
Shore, T.L., McLean, J.A. 1995. Ambrosia beetles. pp. 165–70 in Armstrong, J.A., Ives, W.G.H. (Eds), Forest insect pests in Canada. Ottawa: Canadian Forest Service, Natural Resources CanadaGoogle Scholar
Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs 6Google Scholar