Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T09:27:36.106Z Has data issue: false hasContentIssue false

TEMPERATURE-DEPENDENT DEVELOPMENT OF EGGS AND LARVAE OF CHORISTONEURA FUMIFERANA (CLEM.) (LEPIDOPTERA: TORTRICIDAE) AND SIMULATION OF ITS SEASONAL HISTORY

Published online by Cambridge University Press:  31 May 2012

Jacques Régnière
Affiliation:
Laurentian Forestry Centre, Canadian Forestry Service, PO Box 3800, Sainte-Foy, Québec, Canada G1V 4C7
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Relationships between temperature and development rates of eggs, overwintered second-instar larvae, and all larval stages of Choristoneura fumiferana (Clem.) fed on artificial diet were determined. Egg development was observed at eight constant temperatures between 7 and 32°C. It was fastest at 30°C, and showed relatively little variability. The rate of emergence of overwintered second-instar larvae was observed at 10 constant temperatures between 4 and 33°C. Maximum development rates occurred at 30°C. Variability in emergence rates was large, but unimodal. Development rates of the second to sixth larval instars were measured at 10 constant temperatures between 7 and 36°C, and maximum rates were observed, again, at 30°C. Variability in the development rates of the larvae was large, with no correlations between the development rates of the various larval instars. The results of computer simulations of the insect’s seasonal history are presented and discussed.

Résumé

Les relations entre la température et les taux de développement des oeufs, des larves hivernées ainsi que de tous les stades larvaires se nourrissant ont été déterminées pour Choristoneura fumiferana (Clem.), sur diète artificielle. Le développement des oeufs a été observé à huit températures constantes entre 7 et 32°C, était maximal à 30°C et a montré relativement peu de variabilité. L’émergence des larves diapausées de deuxième stade a été observée à 10 températures constantes entre 4 et 33°C, et se faisait en un minimum de temps à 30°C. La variation du taux de développement d’émergence était grande, mais unimodale. Le développement des larves des deuxième au sixième stades fut observé à 10 températures constantes entre 7 et 36°C, avec, encore, les taux les plus rapides à 30°C. La variabilité des taux de développement était élevée à tous les stades larvaires, et aucune corrélation n’a été trouvée entre les taux de développement des divers stades. Les résultats de simulations par ordinateur, de la biologie saisonnière de l’insecte sont présentés et discutés.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1987

References

Atwood, C.F. 1944. The feeding habits of young spruce budworm larvae. Can. Ent. 76: 6466.CrossRefGoogle Scholar
Bean, J.L. 1961. Predicting emergence of second-instar spruce budworm larvae from hibernation under field conditions in Minnesota. Ann. ent. Soc. Am. 54: 175177.CrossRefGoogle Scholar
Bean, J.L., and Batzer, H.O.. 1957. Mean head width for spruce budworm larval instars in Minnesota and associated data. J. econ. Ent. 50: 499.CrossRefGoogle Scholar
Bean, J.L., and Wilson, L.F.. 1964. Comparing various methods of predicting development of the spruce budworm (Choristoneura fumiferana) in northern Minnesota. J. econ. Ent. 57: 925928.CrossRefGoogle Scholar
Blais, J.R. 1952. The relationship of the spruce budworm (Choristoneura fumiferana Clem.) to the flowering condition of balsam fir (Abies balsamea (L.) Mill.). Can. J. Zool. 30: 119.CrossRefGoogle Scholar
Blais, J.R. 1953. Effects of the destruction of current year's foliage of balsam fir on the fecundity and habits of flight of the spruce budworm. Can. Ent. 85: 446448.CrossRefGoogle Scholar
Brown, N.R. 1946 a. Studies on parasites of the spruce budworm, Archips fumiferana (Clem.). 1. Life history of Apanteles fumiferanae Viereck (Hymenoptera, Braconidae). Can. Ent. 78: 121129.CrossRefGoogle Scholar
Brown, N.R. 1946 b. Studies on parasites of the spruce budworm, Archips fumiferana (Clem.). 1. Life history of Glypta fumiferanae (Viereck) (Hymenoptera, Ichneumonidae). Can. Ent. 78: 139147.Google Scholar
Cameron, J.M., McDougall, G.A., and Bennett, C.W.. 1968. Relation of spruce budworm development and balsam fir shoot growth to heat units. J. econ. Ent. 61: 857858.CrossRefGoogle Scholar
Grisdale, D. 1970. An improved laboratory method for rearing large numbers of spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Can. Ent. 102: 11111117.CrossRefGoogle Scholar
Hardy, Y.J., Lafond, A., and Hamel, L.. 1983. The epidemiology of the current spruce budworm outbreak in Québec. For. Sci. 29: 715725.Google Scholar
Harvey, G.T. 1958. A relationship between photoperiod and cold-storage treatment in the spruce budworm. Science 128: 12051206.CrossRefGoogle ScholarPubMed
Jobin, L.J. 1985. Development of a large-capacity pheromone trap for monitoring forest insect pest populations. pp. 243244in Recent Advances in Spruce Budworms Research. Proceedings of the CANUSA Spruce Budworm Research Symposium, September 1984, Bangor, Maine, Can. For. Serv., Ottawa, Ontario.Google Scholar
Logan, J.A., Woolkind, D.J., Hoyt, S.C., and Tanigoshi, L.K.. 1976. An analytic model for the description of temperature-dependent rate phenomena in arthropods. Environ. Ent. 5: 11331140.CrossRefGoogle Scholar
McGugan, B.M. 1954. Needle-mining habits and larval instars of the spruce budworm. Can. Ent. 85: 439454.CrossRefGoogle Scholar
McGugan, B.M. 1955. Certain host-parasite relationships involving the spruce budworm. Can. Ent. 87: 178187.CrossRefGoogle Scholar
McMorran, A. 1965. A synthetic diet for the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Can. Ent. 97: 5862.CrossRefGoogle Scholar
Miller, C.A. 1958. The measurement of spruce budworm populations and mortality during the first and second larval instars. Can. J. Zool. 36: 409422.CrossRefGoogle Scholar
Miller, C.A., Eidt, D.C., and McDougall, G.A.. 1971. Predicting spruce budworm development. Can. For. Serv. Bi-Mon. Res. Notes 27: 3334.Google Scholar
Moody, B.H., and Otvos, I.S.. 1980. Distribution of hibernating spruce budworm larvae within crowns of balsam fir trees in Newfoundland. Can. For. Serv., Newfoundland For. Res. Cent. Info. Rep. N-X-182. St. John's, Newfoundland.Google Scholar
Régnière, J. 1982. A process-oriented model of spruce budworm phenology (Lepidoptera: Tortricidae). Can. Ent. 114: 811825.CrossRefGoogle Scholar
Régnière, J. 1983. An oviposition model for the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Can. Ent. 115: 13711382.CrossRefGoogle Scholar
Régnière, J. 1984. A method of describing and using variability in development rates for the simulation of insect phenology. Can. Ent. 116: 13671376.CrossRefGoogle Scholar
Régnière, J., Rabb, R.L., and Stinner, R.E.. 1981. Popillia japonica: Simulation of temperature-dependent development of the immatures, and prediction of adult emergence. Environ. Ent. 10: 290296.CrossRefGoogle Scholar
Régnière, J., and Fletcher, R.M.. 1983. Direct measurement of spruce budworm (Lepidoptera: Tortricidae) larval dispersal in forest stands. Environ. Ent. 12: 15321538.CrossRefGoogle Scholar
Schmidt, F.H. 1977. Differences in thermal requirements for diapause termination in two western Choristoneura spp. (Lepidoptera: Tortricidae). Can. Ent. 109: 14691474.CrossRefGoogle Scholar
Sharpe, P.J.H., Curry, G.L., DeMichele, D.W., and Cole, C.L.. 1977. Distribution model of organisms development times. J. theor. Biol. 66: 2128.CrossRefGoogle ScholarPubMed
Taylor, F. 1981. Ecology and evolution of physiological time in insects. Am. Naturalist. 117: 123.CrossRefGoogle Scholar
Thomas, A.W. 1976. Effects of temperature on emergence of second-instar spruce budworm larvae. Can. For. Serv. Maritimes For. Res. Cent. Info Rep. M-X-60. Fredericton, N.B.Google Scholar
Thomson, H.M. 1958. The effects of a microsporidian parasite on the development, reproduction and mortality of the spruce budworm, Choristoneura fumiferana (Clem.). Can. J. Zool. 36: 499511.CrossRefGoogle Scholar
Wagner, T.L., Wu, H., Sharpe, P.J.H., and Coulson, R.N.. 1984. Modeling distributions of insect development time: a literature review and application of the Weibull function. Ann. ent. Soc. Am. 77: 475483.CrossRefGoogle Scholar