Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T15:18:27.243Z Has data issue: false hasContentIssue false

THE SUITABILITY OF NINE SPECIES OF CRUCIFERAE AS HOSTS FOR THE LARVAE OF THE RED TURNIP BEETLE, ENTOMOSCELIS AMERICANA (COLEOPTERA: CHRYSOMELIDAE)12

Published online by Cambridge University Press:  31 May 2012

G. H. Gerber
Affiliation:
Research Station, Agriculture Canada, Winnipeg, Manitoba R3T 2M9
A. A. Obadofin
Affiliation:
Research Station, Agriculture Canada, Winnipeg, Manitoba R3T 2M9

Abstract

The suitability of nine species of Cruciferae as hosts for the larvae of the red turnip beetle, Entomoscelis americana Brown, was tested in the laboratory using excised cotyledons or true leaves as food and rape (Brassica campestris L.) as the standard. The three types of commercial mustards grown in Canada (yellow-seeded (oriental mustard) and brown-seeded (brown mustard) forms of Brassica juncea (L.) Czern.; and yellow mustard, B. hirta Moench) and three weeds (Capsella bursa-pastoris (L.) Medic, shepherd’s purse; Erucastrum gallicum (Willd.) O.E. Schulz, dog mustard; and Sinapis arvensis L., wild mustard) were suitable food plants. Brassica nigra (L.) Koch (black mustard), Descurainia sophia (L.) Webb (flixweed), and Sisymbrium loeselii L. (tall hedge mustard) were marginally suitable. Thlaspi arvense L. (stinkweed) was a non-host plant. These observations suggest that an important element of the pest management system for the red turnip beetle should be the elimination of volunteer commercial mustards and the cruciferous weeds, except T. arvense, in April and May to prevent population build-up.

Résumé

L’acceptabilité de 9 espèces de Crucifères comme hôtes des larves de la chrysomèle du navet, Entomoscelis americana Brown, a été évaluée en laboratoire au moyen de cotylédons excisés ou de premières feuilles vraies comme nourriture et de la navette (Brassica campestris L.) comme témoin. Les 3 types de moutarde commerciale cultivés au Canada (formes à graine jaune (moutarde orientale) et brune (moutarde brune) de Brassica juncea (L.) Czern., la moutarde jaune, B. hirta Moench), ainsi que les trois mauvaises herbes Capsella bursa-pastoris (L.) Medic (bourse-à-pasteur), Erucastrum gallicum (Willd.) O.E. Schulz (moutarde des chiens) et Sinapis arvensis L. (moutarde sauvage) se sont avérés acceptables comme nourriture. En revanche, Brassica nigra (L.) Koch (moutarde noire), Descurainia sophia (L.) Webb (sisymbre Sophia) et Sisymbrium loeselii L. (sisymbre de Loesel) sont marginalement acceptables, tandis que Thlaspi arvense L. (tabouret des champs) constitue un mauvais hôte. Ces observations donnent à penser qu’un élément important du système de lutte antiparasitaire raisonnée contre la chrysomèle devrait être l’élimination des moutardes commerciales spontanées et des mauvaises herbes crucifères, sauf T. arvense, en avril et mai pour prévenir toute pullulation de l’insecte.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beirne, B. P. 1971. Pest insects of annual crop plants in Canada. I. Lepidoptera. II. Diptera. III. Coleoptera. Mem. ent. Soc. Can. 78. 124 pp.Google Scholar
Brovdii, V. M. 1976. Data on ecology of Entomoscelis adonidis Pall. in the Ukrainian SSR. Vest. Zool. 4: 3842.Google Scholar
Brown, A. W. A. 1951. Insect Control by Chemicals. Wiley, New York.CrossRefGoogle Scholar
Bucher, G. E. and Bracken, G. K.. 1976. The bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae). Artificial diet and rearing technique. Can. Ent. 108: 13271338.CrossRefGoogle Scholar
Chew, F. S. 1975. Coevolution of pierid butterflies and their cruciferous foodplants. I. The relative quality of available resources. Oecologia 20: 117127.CrossRefGoogle ScholarPubMed
Feeny, P., Paauwe, K. L., and Demong, N. J.. 1970. Flea beetles and mustard oils: host plant specifity of Phyllotreta cruciferae and P. striolata adults. Ann. ent. Soc. Am. 63: 832841.CrossRefGoogle Scholar
Frankton, C. and Mulligan, G. A.. 1970. Weeds of Canada. Can. Dep. Agric. Publ. 948. 217 pp.Google Scholar
Gerber, G. H. 1974. Red turnip beetle on rape. Canadex 149. 622.Google Scholar
Gerber, G. H. 1976. Effects of feeding by adults of the red turnip beetle, Entomoscelis americana Brown (Coleoptera: Chrysomelidae), during July and August on the yield of rapeseed (Cruciferae). Manitoba Ent. 10: 3135.Google Scholar
Gerber, G. H. and Obadofin, A. A.. 1981. Growth, development, and survival of the larvae of the red turnip beetle, Entomoscelis americana (Coleoptera: Chrysomelidae), on Brassica campestris and B. napus (Cruciferae). Can. Ent. 113: 395406.CrossRefGoogle Scholar
Gmelin, R. and Virtanen, A. I.. 1959. A new type of enzymatic cleavage of mustard oil glucosides. Formation of allylthiocyanate in Thlaspi arvense L. and benzylthiocyanate in Lepidium ruderale L. and Lepidium sativum L. Acta. Chem. Scand. 13: 14741475.CrossRefGoogle Scholar
Harley, K. L. and Thorsteinson, A. J.. 1967. The influence of plant chemicals on the feeding behaviour, development, and survival of the two-striped grasshopper, Melanoplus bivittatus (Say), Acrididae: Orthoptera. Can. J. Zool. 45: 305319.CrossRefGoogle Scholar
Harper, F. R. and Berkenkamp, B.. 1975. Revised growth-stage key for Brassica campestris and B. napus. Can. J. Pl. Sci. 55: 657658.CrossRefGoogle Scholar
Hedge, I. C. 1976. A systematic and geographic survey of the old world Cruciferae. pp. 145In Vaughan, J. G., Macleod, A. J., and Jones, B. M. G. (Eds.), The Biology and Chemistry of the Cruciferae. Academic Press, London and New York.Google Scholar
Hegnauer, R. 1964. Chemotaxonomie der Pflanzen. Band III. Birkäuser Verlag, Basel und Stuttgart.CrossRefGoogle Scholar
House, H. L. 1963. Nutritional diseases. pp. 133160in Steinhaus, E. A. (Ed.), Insect Pathology, an Advanced Treatise. 1. Academic Press, New York, and London.CrossRefGoogle Scholar
Hsiao, T. H. and Fraenkel, G.. 1968. The role of secondary plant substances in the food specificity of the Colorado potato beetle. Ann. ent. Soc. Am. 61: 485493.CrossRefGoogle Scholar
Looman, J. and Best, K. F.. 1979. Budd's flora of the Canadian Prairie Provinces. Can. Dep. Agric. Publ. 1662. 863 pp.Google Scholar
Manolache, F. 1941. Research on the morphology, biology and control of the insect Entomoscelis adonidis Pall. in Romania. Institute of Agronomical Res. of Romania (Bucharest). Methods, Guidance and Investigations 71. 201 pp. (In Romanian.)Google Scholar
Schmeltz, I. 1971. Nicotine and other tobacco alkaloids. pp. 99136in Jacobson, M. and Crosby, D. G. (Eds.), Naturally Occurring Insecticides. Marcel Dekker, New York.Google Scholar
Slansky, F. Jr., and Feeny, P.. 1977. Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants. Ecol. Monogr. 47: 209228.CrossRefGoogle Scholar
Snedecor, G. W. and Cochran, W. G.. 1967. Statistical Methods. Iowa State College Press, Ames.Google Scholar
Stewart, D. B. 1973. The red turnip beetle, Entomoscelis americana Brown (Coleoptera:Chrysomelidae), biology and plant relationships. M.Sc. Thesis, Univ. of Alberta, Edmonton. 86 pp.Google Scholar
Woods, D. 1979. Mustard seed crops. In Rapeseed Association of Canada Publication No. 56. 52 pp.Google Scholar