Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T01:49:21.627Z Has data issue: false hasContentIssue false

Studies on the Cuticle of the Grasshopper Melanoplus bivittatus (Say) (Orthoptera: Acrididae): II. Permeability of the Cuticle to Water at Various Temperatures1

Published online by Cambridge University Press:  31 May 2012

Extract

In a previous communication of this series (4), some general properties of the epicuticle of the two-striped grasshopper Melanoplus bivittatus were deduced from permeability measurements and chemical tests under various conditions. Among other things, it was found that the epicuticle is covered by a lipid layer, which regulates the rate of permeation of moisture through the cuticle. Because it has already been shown (2, 17, 21, 23, 24) that the rate of evaporation from the cuticle of several insects is a function of temperature and age, a study was undertaken of the effect of these factors upon the transpiration through the cuticle of grasshoppers in various instars.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1955

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Alexander, P., Kitchener, J. A., and Briscoe, H. A. A. 1944. The effect of waxes and in-organic powders on the transpiration of water through celluloid membranes. Trans. Farad Soc. 40, 1019.CrossRefGoogle Scholar
2.Beament, J. W. L. 1945. The cuticular lipoids of insects. Jour. Exp. Biol. 21, 115131.CrossRefGoogle Scholar
3.Brubaker, D. W. and Kammermeyer, K. 1953. Flow of gases through plastic membranes. Ind. and Eng. Chem. 45, 11481152.CrossRefGoogle Scholar
4.Chefurka, W. and Pepper, J. H. 1955. Studies on the cuticle of the grasshopper Melanoplus bivittatus (Say) (Orthoptera: Acrididae) I. General properties of the cuticle. Can. Ent. 87, 145151.CrossRefGoogle Scholar
5.Chefurka, W. and Pepper, J. H. 1955. Determination of the constants employed in calculating the surface area of the grasshopper Melanoplus bivittatus (Say) (Orthoptera: Acrididae): Can. Ent. 86, 554557.CrossRefGoogle Scholar
6.Crozier, W. J. 1924. On Biological oxidations as function of temperature. J. Gen. Physiol. 7, 189216.CrossRefGoogle ScholarPubMed
7.Doty, P. M., Aiken, W. H. and Mark, H. 1944. Water vapor permeability of organic films. Ind. and Eng. Chem. Analytical Ed. 16, 686690.CrossRefGoogle Scholar
8.Doty, P. M., Aiken, W. H. and Mark, H. 1946. Temperature dependence of water vapour permeability. Ind. and Eng. Chem. Industrial Ed. 38, 788791.CrossRefGoogle Scholar
9.Doty, P. M. 1946. On the diffusion of vapours through polymers. Jour. Chem. Phys. 14, 244.CrossRefGoogle Scholar
10.Eder, R. 1940. Die kutikuläre Transpiration der Insekten and ihre Abhängigkeit vom Aufbau des Integumentes. Zool. Jahrb allg. Zool. 60, 203240.Google Scholar
11.Hinshelwood, C. N. 1933. The kinetics of chemical change in gaseous systems. Third Ed.Oxford University Press.Google Scholar
12.Johnston, H. S. L., Foering, Yu-Sheng Tao and Messerly, G. H. 1951. The kinetics of the thermal decomposition of Nitric Acid Vapor. Jour. Amer. Chem. Soc. 73, 23192321.CrossRefGoogle Scholar
13.Kistiakowsky, G. B. and Lumry, R. 1949. Anomolous temperature effects in the hydrolysis of urea by urease J. Amer. Chem. Soc. 71, 20062013.CrossRefGoogle Scholar
14.Lafon, M. 1943. Recherches biochimiques sur le squelette tegumentaire des arthropodes. Ann. Sci. Nat. ser. Bot. Zool. 11, 113146.Google Scholar
15.Müller, A. 1932. X-ray investigation of normal paraffins near their melting point. Proc. Roy. Soc. London, Ser. A. 138, 514530.Google Scholar
16.Müller, A. 1938. The dielectric polarization of long-chain ketones at constant volume and variable temperature. Proc. Roy. Soc. London, Sec. A. 166, 316325.Google Scholar
17.Ramsay, J. A. 1935. The evaporation of water from the cockroach. Jour. Exp. Biol. 12, 373383.CrossRefGoogle Scholar
17.(a)Richards, A. Glenn, Clausen, Marion B. and Smith, Myrtle N.. 1953. Studies on arthropod cuticle. X. The asymmetrical penetration of water. J. Cell. and Comp. Physiol. 42, 393414.CrossRefGoogle ScholarPubMed
18.Sizer, I. W. 1939. Temperature activation of the urease-urea system using crude and crystalline urease. J. Gen. Physiol. 22, 719741.CrossRefGoogle ScholarPubMed
19.Sizer, I. W. 1943. Effects of temperature on enzyme kinetics. Adv. in Enzymology, 3, 3562. Nord, F. F. and Worman, C. H. eds.Google Scholar
20.Slifer, E. H., 1948. Isolation of wax-like material from the shell of the grasshopper egg. Discussion of the Faraday Society, No. 3, 182187.Google Scholar
21.Smallman, B. N. 1942. Quantitative changes of the growth and development of a Paurometabolous Insect Dixippus (Carausius morosus Br.) Et Rdt. I. The loss of water in relation to ecdysis. Proc. Roy. Soc. Edinburgh section B. 61, 167185.CrossRefGoogle Scholar
22.Wise, H. and Frech, M. F. 1952. Kinetics of Decomposition of nitric oxide at elevated temperatures. I. Rate measuremcnts in a quartz, vessel. J. Chem. Phys. 20, 2224.CrossRefGoogle Scholar
23.Wigglesworth, V. B. and Gillett, J. D. 1936. The loss of water during ecdysis in Rhodnius prolixus Stat. Proc. Roy. Ent. Soc. 11, 104107.Google Scholar
24.Wigglesworth, V. B. 1945. Transpiration through the cuticle of insects. Jour. Exp. Biol 21, 97114.CrossRefGoogle Scholar