Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T02:17:24.137Z Has data issue: false hasContentIssue false

STRUCTURES IMPLICATED IN THE TRANSPORTATION OF PATHOGENIC FUNGI BY THE EUROPEAN BARK BEETLE, IPS SEXDENTATUS BOERNER: ULTRASTRUCTURE OF A MYCANGIUM

Published online by Cambridge University Press:  31 May 2012

J. Lévieux*
Affiliation:
Station de Zoologie forestière, Ardon, F-45160 Olivet, France
P. Cassier
Affiliation:
Université Paris VI, Cytophysiologie des Arthropodes, 105 Bd Raspail, 75006 Paris, France
D. Guillaumin
Affiliation:
Université Paris VI, Cytophysiologie des Arthropodes, 105 Bd Raspail, 75006 Paris, France
A. Roques
Affiliation:
Station de Zoologie forestière, Ardon, F-45160 Olivet, France
*
1 Author to whom correspondence and reprint requests should be addressed.

Abstract

The European bark beetle, Ips sexdentatus Boerner, carries fungi in puncture pits located on the proximal part of each mandible, the sides of the pronotum, and the elytra.

On the pronotum, each mycangium corresponds to the cup-shaped depression surrounding each seta. Several type III gland cells are associated with each mycangium. The general organization of these cells, commonly found in the epidermis, corresponds to those described by other authors. Their finely granular secretions probably protect the fungi, assure spore adhesion, and also may temporarily inhibit their germination. Similar gland cells were scattered under unspecialized pronotal integument where fungi were not detected.

Thus, it appears that this beetle has evolved a mechanism for the protection or dissemination, or both, of yeasts and fungi such as Ceratocystis sp. This relatively simple system seems to be as efficient as the more evolved mycangia of other species.

Résumé

Le scolyte européen, Ips sexdentatus Boerner, transporte des champignons en plusieurs endroits de sa cuticule. Ces zones sont localisées dans la partie proximale de la mandibule, sur les parties latérales du pronotum et sur les élytres.

Sur le pronotum, chaque mycangium correspond à la dépression en forme de cupule qui entoure chaque soie sensorielle. Ces dépressions communiquent avec plusieurs unités glandulaires de type III appartenant à l’épiderme. Ces cellules sécrétrices s’ouvrent à l’extérieur par de fins canalicules débouchant aux environs de la base de la soie après leur trajet intracuticulaire. L’organisation générale de ces cellules épidermiques peut être aisément comparée à celle décrite par plusieurs auteurs. Leurs sécrétions finement granulaires protègent probablement le champignon avant son inoculation dans le nouvel arbre hôte. Elles pourraient aussi contribuer à l’adhésion des spores sur la cuticule et inhiber temporairement leur germination. Des unités glandulaires identiques existent aussi au niveau des téguments pronotaux où l’on n’a jamais mis en évidence la présence de champignons.

Il apparaît ainsi qu’en utilisant des cellules épidermiques banales, ce scolyte a développé un mécanisme protégeant et facilitant la dissémination de levures et de champignons comme les Ceratocystis. Au point de vue fonctionnel, ce système relativement simple paraît être aussi efficace que les mycangia plus évolués mis en évidence dans d’autres espèces.

[Fourni par les auteurs]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barras, S.J., and Perry, T.. 1971. Gland cells and fungi associated with prothoracic mycangium of Dendroctonus adjunctus (Col., Scol.). Ann. ent. Soc. Am. 64: 123126.CrossRefGoogle Scholar
Barras, S.J., and Perry, T.. 1972. Fungal symbionts in the prothoracic mycangium of Dendroctonus frontalis (Col., Scolytidae). Z. ang. Ent. 71: 95104.CrossRefGoogle Scholar
Batra, L.R. 1963. Ecology of Ambrosia fungi and their dissemination by beetles. Trans. Kans. Acad. Sci. 66: 213236.CrossRefGoogle Scholar
Beaver, R.A. 1989. Insect fungus relationships in the bark and ambrosia-beetles. pp. 121–143 in Wilding, N., Collins, N.M., Hammond, P.M., and Weber, J.F. (Eds.), Insect–Fungus Interactions. Academic Press, New York, NY. 344 pp.Google Scholar
Berryman, A.A. 1972. Resistance of conifers to invasion by bark beetle–fungus associations. Bio-Science 22: 599601.Google Scholar
Berryman, A.A. 1989. Adaptative pathways in Scolytid-Fungus associations. pp. 143–159 in Wilding, N., Collins, N.M., Hammond, P.M., and Weber, J.F. (Eds.), Insect–Fungus Interactions. Academic Press, New York, NY. 344 pp.Google Scholar
Bridges, J.R., and Moser, J.C.. 1983. Role of two phoretic mites in transmission of bluestain fungi Ceratocystis minor. Ecol. Ent. 8: 912.CrossRefGoogle Scholar
Buchner, P. 1953. Endosymbiose der Tiere mit pflanzlichen Mikroorganismen. Birkhäuser, Basel.CrossRefGoogle Scholar
Christiansen, E., and Horntvedt, R.. 1983. Combined Ips/Ceratocystis attack on Norway spruce, and defensive mechanisms of the trees. Z. ang. Ent. 96: 110118.CrossRefGoogle Scholar
Farris, S.H., and Funk, A.. 1965. Repositories of symbiotic fungus in the ambrosia beetle Platypus wilsoni Swaine (Col. Platypodidae). Can. Ent. 97: 527532.CrossRefGoogle Scholar
Francke-Grosmann, H. 1963. Die Ubertragung der Pilzflora bei dem Borkenkäfer Ips acuminatus Gyll. Ein Beitrag zur Kenntnis der Ipiden-Symbiosen. Z. ang. Ent. 52: 355361.CrossRefGoogle Scholar
Francke-Grosmann, H. 1965. Ein symbioseorgan bei dem Borkenkäfer Dentroctonus frontalis Zimm. Naturwiss. 52: 143144.CrossRefGoogle Scholar
Francke-Grosmann, H. 1967. Ectosymbiosis in wood-inhabiting insects. pp. 141205in Henry, S.M. (Ed.), Symbiosis. Vol. 2. Academic Press, New York, NY.CrossRefGoogle Scholar
Graham, K. 1967. Fungal–insect mutualism in trees and timber. A. Rev. Ent. 12: 105126.CrossRefGoogle Scholar
Happ, G.M., Happ, C.M., and Barras, S.J.. 1971. Fine structure of the prothoracic mycangium, a chamber for the culture of symbiotic fungi, in the southern pine beetle, Dendroctonus frontalis. Tissue Cell 3(2): 295308.CrossRefGoogle ScholarPubMed
Lévieux, J., Lieutier, F., Moser, J.C., and Perry, T.J.. 1989. Transportation of phytopathogenic fungi by the bark beetle Ips sexdentatus Boerner and associated mites. J. appl. Ent. 108: 111.CrossRefGoogle Scholar
Livingston, R.L., and Berryman, A.A.. 1972. Fungus transport structures in the fir engraver, Scolytus ventralis (Coleoptera: Scolytidae). Can. Ent. 104: 17931800.CrossRefGoogle Scholar
Lynn, D.G., and Chang, M.. 1990. Phenolic signals cohabitation: Implications for plant development. A. Rev. Plant Physiol. Plant Molec. Biol. 41: 497516.CrossRefGoogle Scholar
Noirot, C., and Quennedey, A.. 1974. Fine structure of epidermal glands. A. Rev. Ent. 19: 6180.CrossRefGoogle Scholar
Norris, D.M. 1979. The mutualistic fungi of Xyleborini beetles. pp. 5364in Batra, L.R. (Ed.), Insect Fungus Symbiosis: Nutrition, Mutualism and Commensalism. John Wiley and Sons, New York, NY.Google Scholar
Reid, R.W., Witney, H.S., and Watson, J.A.. 1967. Reactions of lodgepole pine to attack by Dendroctonus ponderosae Hopkins and blue stain fungi. Can. J. Bot. 46: 11151126.CrossRefGoogle Scholar
Reynolds, E.S. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17: 208212.Google ScholarPubMed
Safranyk, L., Shrimpton, D.M., and Whitney, H.S.. 1975. An interpretation of the interaction between lodgepole pine, the mountain pine beetle, and its associated blue stain fungi in western Canada. pp. 406428in Baumgartner, D.M. (Ed.), Management of Lodgepole Pine Ecosystems. Wash. State Univ. Coop. Ext. Serv., Pullman, WA.Google Scholar
Schneider, I.A., and Rudinsky, J.A.. 1969. Mycetangial glands and their seasonal changes in Gnathotrichus retusus and G. sulcatus. Ann. ent. Soc. Am. 62: 3943.CrossRefGoogle Scholar
Webber, J.F., and Gibbs, J.N.. 1989. Insect dissemination of fungal pathogens of trees. pp. 161–193 in Wilding, N., Collins, N.M., Hammond, P.M., and Weber, J.F. (Eds.), Insect–Fungus Interactions. Academic Press, New York, NY. 344 pp.Google Scholar
Whitney, H.S. 1982. Relationships between bark beetles and symbiotic organisms. pp. 183211in Mitton, J.B., and Sturgeon, K.B. (Eds.), Bark Beetles in North American Conifers. Univ. Texas Press, Austin, TX.Google Scholar
Wood, S.L. 1982. The bark and ambrosia beetles of North and central America (Col., Scolytidae), a taxonomic monograph. Great Basin Nat. Mem. 6: 11359.Google Scholar