Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T10:41:48.411Z Has data issue: false hasContentIssue false

SPECTROPHOTOMETRIC DETERMINATION OF LARVAL INGESTION RATES IN THE SPRUCE BUDWORM (LEPIDOPTERA: TORTRICIDAE)

Published online by Cambridge University Press:  31 May 2012

Arthur Retnakaran
Affiliation:
Forest Pest Management Institute, Canadian Forestry Service, Sault Ste. Marie, Ontario P6A 5M7
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The food intake of fourth, fifth, and sixth instar spruce budworm, Choristoneura fumiferana Clemens, was investigated by feeding larvae for 24 h artificial diet incorporating amaranth dye. Amaranth was selected because it followed Beer's law over a wide concentration range, mixed well with the meridic diet, could be extracted in ice-cold water, was not absorbed by larval tissue, had minimal feeding deterrence as well as marginal adverse chronic effects on the larvae, and finally had negligible effect on ingestion rate over a 24 h period. The results indicated that 6th instars consumed 20 times and 5th instars 3 times as much as 4th instars, but when compared on a body weight basis the ingestion rate was similar in all three instars. Temperature and photoperiod influenced the rate of food intake. The application of these findings in assessing defoliation to the forests as well as estimating dosage of pesticides for control of this species are discussed.

Résumé

On a étudié la quantité de nourriture ingérée par les larves de la tordeuse des bourgeons de l'épinette (Choristoneura fumiferana [Clem.] des quatrième, cinquième et sixième stades soumises pendant 24 heures à un régime artificiel coloré à l'amarante. On a choisi l'amarante parce que c'est un colorant qui obéit à la loi de Beer dans un large éventail de concentrations, qu'il se mélange bien avec les constituants du régime, qu'il peut être extrait à l'eau glacée, mais n'est pas absorbé par les tissus des larves, qu'il ne dissuade que très peu les larves et ne produit sur elles qu'un faible effet chronique nuisible et, enfin, qu'il n'a qu'un effet négligeable sur la qu antité de nourriture ingérée en 24 heures. D'après les résultats, les larves des sixième et cinquième ont ingéré respectivement 20 et 3 fois plus de nourriture que les larves du quatrième stade, mais, en fonction du poids corporel, la proportion ingérée était semblable dans les trois cas. La température et la photopériode ont influé sur la quantité de nourriture ingérée. On discute de l'application de ces résultats à l'évaluation de la défoliation des forêts ainsi qu'à l'estimation de la dose de pesticides à utiliser contre la tordeuse.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1983

References

Atkinson, H. J. 1977. The role of pharyngeal haemaglobin in the feeding of the marine nematode, Enoplus brevis. J. Zool. Lond. 183: 465471.CrossRefGoogle Scholar
Burges, H. D. 1981. Microbial control of pests and plant diseases 1970–1980. Academic Press, London.Google Scholar
Buscarlet, L. A. 1974. The use of 22Na for determining the food intake of the migratory locust. Oikos 25: 204208.CrossRefGoogle Scholar
Chock, A. K. and Dover, M. J.. 1980. Registration. In Proceedings of the workshop on Insect Pest Management with microbial agents: Recent achievements, deficiencies, and innovation. 44–45, IPRC, Cornell University, Ithaca, New York.Google Scholar
Crossley, D. A. Jr. 1966. Radioisotope measurement of food consumption by leaf beetle species, Chrysomela knaki Brown. Ecology 47: 18.CrossRefGoogle Scholar
Daum, R. J., McKibben, G. H., Davich, T. B., and McLaughlin, R.. 1969. Development of the bait principle for boll weevil control: Calco oil red N-1700 dye for measuring ingestion. J. econ. Ent. 62: 370375.CrossRefGoogle Scholar
Gales, V., Preda, N.Popa, L.Sendrea, D., and Simu, C.. 1972. Recherches toxicologiques sur le colorant amaranthe. J. Eur. Toxicol. 5: 167173.Google Scholar
Granett, J. and Retnakaran, A.. 1977. Stadial susceptibility of eastern spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae), to the insect growth regulator Dimilin®. Can. Ent. 109: 893894.CrossRefGoogle Scholar
Grisdale, D. 1970. An improved laboratory method for rearing large numbers of spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Can. Ent. 102: 11111117.CrossRefGoogle Scholar
Hori, K. and Endo, M.. 1977. Metabolism of ingested auxins in the bug Lygus disponsi: conversion of indole-3 acetic acid and gibberellin. J. Insect Physiol. 23: 10751080.CrossRefGoogle Scholar
Kasting, R. and McGinnis, A. J.. 1965. Measuring consumption of food by an insect with carbon-14 labelled compounds. J. Insect Physiol. 11: 12531260.CrossRefGoogle Scholar
Kuramochi, K. and Nishijima, Y.. 1980. Measurement of the meal size of the horn fly, Haematobia irritans (L.) (Diptera: Muscidae) by the use of amaranth. Appl. Ent. Zool. 15: 262269.CrossRefGoogle Scholar
LeConte, P. and Lesca, P.. 1978. Absence of activity of amaranth (FD and C Red No. 2) in the Salmonella/microsome mutagenicity test. Food Cosmet. Toxicol. 16: 8990.CrossRefGoogle Scholar
Maas, W., Van Hes, R., Grossucrt, A. C., and Deul, D. H.. 1980. Benzoylphenylurea insecticides. Chem. Pflanzenschutz. Schädlingsbekämpf. 6: 423470.Google Scholar
Maddrell, H. P. and Gardiner, B. O. C.. 1975. Induction of transport of organic anions in malpighian tubules of Rhodnius. J. exp. Biol. 63: 755761.CrossRefGoogle ScholarPubMed
Maddrell, H. P. and Gardiner, B. O. C.. 1976. Excretion of alkaloids by malpighian tubules of insects. J. exp. Biol. 64: 267281.CrossRefGoogle ScholarPubMed
McGinnis, A. J. and Kasting, R.. 1964. Colorimetric analysis of chromic oxide used to study food utilization by phytophagous insects. J. Agric. Food Chem. 12: 259262.CrossRefGoogle Scholar
McMorran, A. 1965. A synthetic diet for the spruce budworm Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Can. Ent. 97: 5862.CrossRefGoogle Scholar
Miles, P. W. and Hori, K.. 1977. Fate of ingested B-indolyl acetic acid in Creontiades dilutus. J. Insect Physiol. 23: 221226.CrossRefGoogle ScholarPubMed
Morris, R. F.(Ed.) 1963. The dynamics of epidemic spruce budworm populations. Mem. ent. Soc. Can. 31. 332 pp.Google Scholar
Palmer, K. A., Sheu, C. W., and Green, S.. 1979. Mutagenicity studies of R-amino salt, a metabolite of amaranth (FD and C Red No. 2), in mouse lymphoma cells heterozygous at the thymidine kinase locus and in the rat dominant lethal test. Food. Cosmet. Toxicol. 17: 59.CrossRefGoogle Scholar
Parra, J. R. P. and Kogan, M.. 1981. Comparative analysis of methods for measurements of food intake and utilization using the soybean looper, Pseudoplusia includens and artificial media. Entomologia exp. appl. 30: 4557.CrossRefGoogle Scholar
Prebble, M. L. (Ed.) 1976. Aerial control of forest insects in Canada. Information Canada, Supply and Services, Government of Canada, Ottawa K1A 0S9. 330 pp.Google Scholar
Retnakaran, A. 1973. Hormonal induction of supernumerary instars in the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Can. Ent. 105: 459461.CrossRefGoogle Scholar
Retnakaran, A. 1979. Effect of a new moult inhibitor (EL-494) on the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Can. Ent. 111: 847850.CrossRefGoogle Scholar
Retnakaran, A. 1981. Toxicology and efficacy of insect growth regulators aerially applied against the spruce budworm at Hearst (1978), Wawa (1979) and the French river area (1980). Inf. Rep., Can. For. Serv. FPM-X-45.Google Scholar
Rose, A. H. and Lindquist, O. H.. 1977. Insects of eastern spruces, fir, and hemlock. Printing and Publishing, Supply and Services, Government of Canada, Ottawa. 159 pp.Google Scholar
Stehr, G. 1954. A laboratory method of rearing the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Can. Ent. 86: 423428.CrossRefGoogle Scholar
Waldbauer, G. P. 1968. The consumption and utilization of food by insects. Adv. Insect Physiol. 5: 229288.CrossRefGoogle Scholar