Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T17:26:06.344Z Has data issue: false hasContentIssue false

Spatial distribution of chewing lice (Phthiraptera: Menoponidae, Philopteridae) infesting Canada geese and mallards (Aves: Anatidae), in Manitoba, Canada

Published online by Cambridge University Press:  15 August 2022

Alexandra A. Grossi*
Affiliation:
Institute of Zoology, Guangdong Academy of Sciences, 105 Xingang West Road, Haizhu District, Guangzhou, 510260, Guangdong Province, China
Terry D. Galloway
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
*
*Corresponding author. Email: [email protected]

Abstract

Canada geese, Branta canadensis (Linnaeus) (Anseriformes: Anatidae), and mallards, Anas platyrhynchos Linnaeus (Anseriformes: Anatidae), are infested by several species of chewing lice (Phthiraptera: Menoponidae, Philopteridae). We examined the spatial distribution of lice upon these hosts. Hosts were dissected into five body regions: head and neck, wings, back, underside, and tail. Canada geese (n = 20) were infested with six species of lice. Anaticola anseris (Linnaeus) (n = 423) and Anatoecus spp. (n = 510) were restricted to the wings and head, respectively, whereas Ornithobius goniopleurus Denny (n = 1919) and Ciconiphilus pectiniventris (Harrison) (n = 757) were spread over multiple body regions. Trinoton anserinum (Fabricius) (n = 2) was present in insufficient numbers to reach conclusions about its distribution. Mallards (n = 8) were infested with four species of lice. Anaticola crassicornis (Scopoli) (n = 121) and Anatoecus dentatus (Scopoli) (n = 244) were restricted to the wings and head, respectively. Holomenopon maxbeieri Eichler (n = 52) infested multiple body regions, and Trinoton querquedulae (Linnaeus) (n = 27) were found mainly on the wings. Chewing lice infesting mallards and Canada geese partition their hosts in accordance with their own morphological and ecological requirements.

Type
Research Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of the Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Marla Schwarzfeld

References

Arnold, D.C. 2005. Review of the genus Ornithobius (Phthiraptera: Ischnocera: Philopteridae), with descriptions of two new species. Journal of the Kansas Entomological Society, 78: 158166. https://doi.org/10.2317/0403.09.1.CrossRefGoogle Scholar
Ash, J.S. 1960. A study of the Mallophaga of birds with particular reference to their ecology. Ibis, 102: 93110. https://doi.org/10.1111/j.1474-919X.1960.tb05095.x.CrossRefGoogle Scholar
Choe, J.C. and Kim, K.C. 1988. Microhabitat preference and coexistence of ectoparasitic arthropods on Alaskan seabirds. Canadian Journal of Zoology, 66: 987997. https://doi.org/10.1139/z88-146.CrossRefGoogle Scholar
Cicchino, A.C. and Mey, E. 2007. On morphology, taxonomy, ecology, and distribution of Bothriometopus Taschenberg (Phthiraptera, Ischnocera, Philopteridae sensu lato). Rudolstädter naturhistorische Schriften, 14: 4360.Google Scholar
Clay, T. 1949. Some problems in the evolution of a group of ectoparasites. Evolution, 3: 279299. https://doi.org/10.1111/j.1558-5646.1949.tb00030.x.CrossRefGoogle ScholarPubMed
Clay, T. 1951. An introduction to a classification of the avian Ischnocera (Mallophaga): Part I. Royal Entomological Society, 102: 171194. https://doi.org/10.1111/j.1365-2311.1951.tb00746.x.Google Scholar
Clayton, D.H. 1991. Coevolution of avian grooming and ectoparasite avoidance. In Bird–parasite interactions: ecology, evolution and behaviour. Edited by Loye, J.E. and Zuk, M.. Oxford University Press, Oxford, United Kingdom. Pp. 258289.Google Scholar
Clayton, D.H., Koop, J.A.H., Harbison, C.W., Moyer, B.R., and Bush, S.E. 2010. How birds combat ectoparasites. Open Ornithology Journal, 3: 4171. https://doi.org/10.2174/1874453201003010041.CrossRefGoogle Scholar
Dubinin, V. 1947. Studies in the adaptation of ectoparasites. II. Ecological adaptations of the mallophagans and feather mites. Parazitologiya Sb., 9: 191222. [In Russian].Google Scholar
Eichler, W. and Vasjukova, T.T. 1980. Die Mallophagengattung Anaticola . Deutsche Entomologische Zeitschrift, 27: 335375.CrossRefGoogle Scholar
Fernández-González, S., Pérez-Rodríguez, A., de la Hera, I., Proctor, H.C., and Pérez-Tris, J. 2015. Different space preferences and within-host competition promote niche partitioning between symbiotic feather mite species. International Journal of Parasitology, 45: 655662. https://doi.org/10.1016/J.IJPARA.2015.04.003.CrossRefGoogle ScholarPubMed
Goodman, G.B., Klingensmith, M.C., Bush, S.E., and Clayton, D.H. 2020.The role of scratching in the control of ectoparasites on birds. The Auk, 137: 19. https://doi.org/10.1093/auk/ukaa010.CrossRefGoogle Scholar
Grossi, A. and Proctor, H. 2021. Variation in ectosymbiont assemblages associated with rock pigeons (Columba livia) from coast to coast in Canada. Diversity, 13: 9. https://doi.org/10.3390/d13010009.CrossRefGoogle Scholar
Grossi, A.A., Sharanowski, B.J., and Galloway, T.D. 2014. Anatoecus species (Phthiraptera: Philopteridae) from Anseriformes in North America and taxonomic status of Anatoecus dentatus and Anatoecus icterodes . The Canadian Entomologist, 146: 598608. https://doi.org/10.4039/tce.2014.12.CrossRefGoogle Scholar
Johnson, K.P., Shreve, S.M., and Smith, V.S. 2012. Repeated adaptive divergence of microhabitat specialization in avian feather lice. BMC Biology, 10: 52. https://doi.org/10.1186/1741-7007-10-52.CrossRefGoogle ScholarPubMed
Kéler, S.V. 1960. Über die dualistische Differenzierung der Gattung Anatoecus Cummings (Mallophaga). Zeitschrift für Parasitenkunde, 20: 207316.CrossRefGoogle Scholar
Marshall, A. 1981. The ecology of ectoparasitic insects. Academic Press, London, United Kingdom.Google Scholar
Mestre, A., Mesquita-Joanes, F., Proctor, H., and Monrós, J.S. 2011. Different scales of spatial segregation of two species of feather mites on the wings of a passerine bird. Journal of Parasitology, 97: 237244. https://doi.org/10.1645/GE-2585.1.CrossRefGoogle ScholarPubMed
Nelson, B.C. and Murray, M.D. 1971. The distribution of Mallophaga on the domestic pigeon (Columba livia). International Journal of Parasitology, 1: 2129. https://doi.org/10.1016/0020-7519(71)90042-7.CrossRefGoogle Scholar
Oksanen, J., Blanchet, F., Guillaume Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. 2018. Vegan: community ecology package. R package. Version 2.4-6. https://CRAN.R-project.org/package=vegan Google Scholar
Palma, R.L., Johnson, A.R., Cezilly, F., Thomas, F., and Renaud, F. 2002. Diversity and distribution of feather lice on greater flamingoes (Phoenicopterus ruber roseus) in the Camargue, southern France. New Zealand Entomologist, 25: 8789. https://doi.org/10.1080/00779962.2002.9722099.CrossRefGoogle Scholar
Peters, H.S. 1928. Mallophaga from Ohio birds. Ohio Journal of Science, 28: 215228.Google Scholar
Price, R.D. 1971. Review of genus Holomenopon (Mallophaga: Menoponidae) from Anseriformes. Annals of the Entomological Society of America, 64: 633646. https://doi.org/10.1093/aesa/64.3.633.CrossRefGoogle Scholar
Price, R.D. and Beer, J.R. 1965. A review of Ciconiphilus Bedford (Mallophaga: Menoponidae). The Canadian Entomologist, 97: 657666. https://doi.org/10.4039/Ent97657-6.CrossRefGoogle Scholar
Price, R.D., Hellenthal, R.A., and Palma, R.L. 2003. World checklist of chewing lice, with host associations and keys to families and genera. In The chewing lice: world checklist and biological overview. Edited by Price, R.D., Hellenthal, R.A., Palma, R.L., Johnson, K.P., and Clayton, D.H.. Illinois Natural History Survey Special Publication 24. Illinois Natural History Survey, Urbana, Illinois, United States of America. 448 pp. https://doi.org/10.1080/10635150490468521.Google Scholar
R Core Team. 2018. R: a language and environment for statistical computing. Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Richards, W.R. 1964. A short method for making balsam mounts of aphids and scale insects. The Canadian Entomologist, 96: 963966. https://doi.org/10.4039/Ent96963-7.CrossRefGoogle Scholar
Rouag-Ziane, N., Boulahbal, A., Gauthier-Clerc, M., Thomas, F., and Chabi, Y. 2007. Inventaire et quantification des ectoparasites de la foulque macroule Fulica atra (Gruiformes: Rallidés) dans le nord-est de l’Algérie. Parasite, 14: 253256. https://doi.org/10.1051/parasite/2007143253.CrossRefGoogle Scholar
Stenram, H. 1956. The ecology of Columbicola columbae L. (Mallophaga). Opuscula Entomologica, 21: 170190.Google Scholar
Stock, T.M. and Hunt, L.E. 1989. Site specificity of three species of lice, Mallophaga, on the willow ptarmigan, Lagopus, from Chilkat Pass, British Columbia. Canadian Field-Naturalist, 103: 584588.Google Scholar
Strilchuk, K.W. 1976. Distribution of biting lice (Mallophaga) on two wild mallards (Anas platyrhynchos). Canadian Field-Naturalist, 90: 7778.Google Scholar
Touati, L. and Samraoui, B. 2013. Diversity and distribution of avian lice on greater flamingo chicks (Phoenicopterus roseus) in Algeria. Avian Biology Research, 6: 261268. https://doi.org/10.3184/175815513X13802162326884.CrossRefGoogle Scholar
Touati, L., Figuerolac, J., Alfarhand, A.H., and Samraoui, B. 2015. Distribution patterns of ectoparasites of Glossy Ibis (Plegadis falcinellus) chicks. Zoology and Ecology, 25: 4653. https://doi.org/10.1080/21658005.2015.1005447.Google Scholar
Ziani, R., Ziani, B.E.C., Dik, B., Marniche, F., and Lazli, A. 2020. Louse species (Phthiraptera: Amblycera, Ischnocera) collected on the common coot, Fulica atra (Linnaeus, 1758), and their microhabitat selection. Bulletin de la Société zoologique de France, 145: 135153.Google Scholar
Supplementary material: PDF

Grossi and Galloway supplementary material

Tables S1-S2

Download Grossi and Galloway supplementary material(PDF)
PDF 174.3 KB