Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T08:12:03.189Z Has data issue: false hasContentIssue false

SPACE- AND COHORT-DEPENDENT LONGEVITY IN ADULT LIRIOMYZA TRIFOLII (BURGESS) (DIPTERA: AGROMYZIDAE) MASS-REARING CULTURES

Published online by Cambridge University Press:  31 May 2012

Kevin M. Heinz
Affiliation:
Department of Entomology, Biological Control, Texas A&M University, College Station, Texas 77843-2475

Abstract

Various biological parameters of Liriomyza trifolii (Burgess) were investigated to maximize mass-rearing efficiency of this insect. Average percentage emergence from a cohort of uniformly aged pupae was 90.0% of which 37.0% were males. A significant difference in the among-day emergence sequences from a pupal cohort was detected with 77.5% of all females and 80.1% of all males emerging during the first 2 days of the emergence sequence. Adults emerging on day 3 within the emergence sequence lived significantly longer than did flies emerging on the other days within the sequence. Male flies lived an average of 9.9 days or 33.1% less than the 14.8-day average for female flies. Cage size was also found to influence adult longevity significantly with the greatest average longevity (20 days for females and 12 days for males) occurring in 385.6-cm3 cages. Emergence time within an emergence sequence and the physical size of an experimental unit are two previously experimentally undocumented sources of variation influencing longevity of Liriomyza. A significant nonlinear relationship between the number of flies leaving the rearing cages (as a result of normal rearing procedures) and the daily number of pupal L. trifolii added to each cage was detected. From these biological parameters, a birth and death rate simulation model was developed to predict adult population sizes of L. trifolii within a mass-rearing program. The gender-specific simulation model consisted of adult emergence (quantified in terms of the adult emergence sequence from a known number of pupae entered into each rearing culture), and adult death rate (quantified in terms of the survivorship of adults within the culture and the number of adults escaping from the culture). The adult population sizes predicted by the simulation model were not significantly different from the average population sizes observed from the rearing cages in validation studies utilizing normal mass-rearing practices. Use of this model should reduce the effort expended on maintaining host populations for commercial mass-production of natural enemies of L. trifolii.

Résumé

Diverses variables biologiques propres à Liriomyza trifolii (Burgess) ont été étudiées dans le but de maximiser l’efficacité des élevages en masse de cet insecte. Le pourcentage moyen d’émergence au sein d’une cohorte de pupes du même âge a été évalué à 90%, dont 37,0% de mâles. Une différence significative entre les séquences journalières au sein d’une cohorte de pupes a été décelée et 77,5% des femelles et 80,1% des mâles ont émergé au cours des deux premières journées de la séquence. Les adultes apparus le troisième jour de la séquence ont vécu significativement plus longtemps que les adultes apparus les autres jours. Les mâles adultes ont vécu en moyenne 9,9 jours, soit 33,1% moins longtemps que les femelles en moyenne (14,8 jours). La taille des cages influençait significativement la longévité des adultes et la longévité moyenne la plus longue (20 jours dans le cas des femelles et 12 jours dans le cas des mâles) a été enregistrée dans les pièges de 385,6 cm3. Le moment de l’émergence au cours de la séquence et la taille de l’engin expérimental sont deux sources de variation de la longévité de Liriomyza qui n’avaient jamais été étudiées auparavant. Une relation non linéaire significative entre le nombre de mouches émergeant des cages d’élevage (au cours d’une procédure normale d’élevage) et le nombre moyen de pupes de L. trifolii qui viennent s’ajouter chaque jour a été constatée. À partir de ces variables biologiques, un modèle simulant les taux de naissance et de mortalité a été ébauché pour tenter de prédire les tailles des populations d’adultes de L. trifolii que l’on peut espérer d’un programme d’élevage en masse. Le modèle de simulation spécifique à chaque genre tenait compte de l’émergence des adultes (mesurée en comptant le nombre d’adultes d’une séquence émergés à partir d’un nombre connu de pupes contenu dans l’élevage) et du taux de mortalité des adultes (mesuré à partir de la survie des adultes dans l’élevage et du nombre d’adultes échappés de l’élevage). Les densités des populations d’adultes estimées d’après le modèle ne différaient pas significativement des densités moyennes des populations observées dans les cages d’élevage au cours d’études de validation à la suite de procédures normales d’élevage en masse. Le modèle devrait réduire considérablement les efforts nécessaires au maintien de populations hôtes en vue de la production massive de populations d’ennemis naturels de L. trifolii.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carey, J.R. 1993. Applied Demography for Biologists. Oxford University Press, New York, NY. 206 pp.CrossRefGoogle Scholar
Carey, J.R., Wong, T.T.Y., and Ramadan, M.M.. 1988. Demographic framework for parasitoid mass rearing: Case study of Biosteres tryoni, a larval parasitoid of Tephritid fruit flies. Theoretical Population Biology 34: 279296.CrossRefGoogle Scholar
Carlton, C.A., and Allen, W.W.. 1981. The biology of Liriomyza trifolii on beans and chrysanthemums. pp. 42–49 in Schuster, D.J. (Ed.), Proceedings, Institute of Food and Agricultural Science - Industry Conference Biology and Control of Liriomyza Leafminers, Lake Buena Vista, FL, 3–4 November 1981. Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL.Google Scholar
Chandler, L.D., and Gilstrap, F.E.. 1986. Biology of Liriomyza trifolii (Burgess) on bell peppers under constant temperature conditions. Southwestern Entomologist 11: 269276.Google Scholar
Dimetry, N.Z. 1971. Biological studies on a leaf mining Diptera, Liriomyza trifolii Burgess attacking beans in Egypt. Bulletin of the Entomological Society of Egypt 55: 5569.Google Scholar
Glantz, S.A., and Slinker, B.K.. 1990. Primer of Applied Regression and Analysis of Variance. McGraw-Hill, New York, NY. 777 pp.Google Scholar
Haile, D.G., and Weidhaas, D.E.. 1977. Computer simulation of mosquito populations (Anopheles albimanus) for comparing the effectiveness of control techniques. Journal of Medical Entomology 13: 553567.CrossRefGoogle Scholar
Heinz, K.M., and Chaney, W.E.. 1992. Sampling and biological control of Liriomyza leafminers on celery. California Celery Research Advisory Board 1991–92 Annual Report: 6374.Google Scholar
Heinz, K.M., and Chaney, W.E.. 1993. Biological control of Liriomyza leafminers on celery. California Celery Research Advisory Board 1992–93 Annual Report: 7178.Google Scholar
Heinz, K.M., Nunney, L., and Parrella, M.P.. 1993. Toward predictable biological control of Liriomyza trifolii infesting greenhouse cut chrysanthemums. Environmental Entomology 22: 12171233.CrossRefGoogle Scholar
Heinz, K.M., and Parrella, M.P.. 1990. Biological control of insect pests on greenhouse marigolds. Environmental Entomology 19: 825835.CrossRefGoogle Scholar
Jandel Scientific. 1992. TableCurve Windows v1.0 User's Manual. Jandel Scientific, San Rafael, CA. 399 pp.Google Scholar
Johnson, M.W., and Hara, A.H.. 1987. Influence of host crop on parasitoids (Hymenoptera) of Liriomyza spp. (Diptera: Agromyzidae). Environmental Entomology 6: 339344.CrossRefGoogle Scholar
King, E.G., Hopper, K.R., and Powell, J.E.. 1985. Analysis of systems for biological control of crop arthropod pests in the U. S. by augmentation of predators and parasites. pp. 201227in Hoy, M.A., and Herzog, D.C. (Eds.), Biological Control in Agricultural IPM Systems. Academic Press, Inc., Orlando, FL.CrossRefGoogle Scholar
LaSalle, J., and Parrella, M.P.. 1991. The chalcidoid parasites (Hymenoptera, Chalcidoidae) of economically important Liriomyza species (Diptera, Agromyzidae) in North America. Proceedings of the Entomological Society of Washington 93: 571591.Google Scholar
Leibee, G.L. 1984. Influence of temperature on development and fecundity of Liriomyza trifolii (Burgess) (Diptera: Agromyzidae) on celery. Environmental Entomology 13: 497501.CrossRefGoogle Scholar
Minkenberg, O.P.J.M. 1988. Life history of the agromyzid fly Liriomyza trifolii on tomato at different temperatures. Entomologia experimentalis et applicata 48: 7384.CrossRefGoogle Scholar
Minkenberg, O.P.J.M., and van Lenteren, J.C.. 1986. The leafminers Liriomyza bryoniae and L. trifolii (Diptera: Agromyzidae), their parasites and host plants: A review. Agricultural University Wageningen Papers 86: 150.Google Scholar
Morrison, R.K., and King, E.G.. 1977. Mass production of natural enemies. pp. 183217in Ridgway, R.L., and Vinson, S.B. (Eds.), Biological Control by Augmentation of Natural Enemies. Plenum Press, New York, NY.CrossRefGoogle Scholar
Munro, J. 1973. Some applications of computer modeling in population suppression by sterile males. pp. 8194in Computer Models and Application of the Sterile Male Technique; Proceedings of a Panel Organized by the Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture Held in Vienna, 13–17 December 1971. International Atomic Energy Agency, Vienna.Google Scholar
Oatman, E.R., and Michelbacher, A.E.. 1958. The melon leafminer, Liriomyza pictella (Thomson) (Diptera: Agromyzidae). Annals of the Entomological Society of America 51: 557566.Google Scholar
Parkman, P., and Pienkowski, R.L.. 1990. Sublethal effects of neem seed extract on adults of Liriomyza trifolii (Diptera: Agromyzidae). Journal of Economic Entomology 83: 12461249.CrossRefGoogle Scholar
Parrella, M.P. 1983. Intraspecific competition among larvae of Liriomyza trifolii (Diptera: Agromyzidae): Effects on colony production. Environmental Entomology 12: 14121414.CrossRefGoogle Scholar
Parrella, M.P. 1984. Effect of temperature on oviposition, feeding, and longevity of Liriomyza trifolii (Diptera: Agromyzidae). The Canadian Entomologist 116: 8592.CrossRefGoogle Scholar
Parrella, M.P. 1987. Biology of Liriomyza. Annual Reviews of Entomology 32: 201224.CrossRefGoogle Scholar
Parrella, M.P., and Robb, K.L.. 1985. Economically important members of the genus Liriomyza Mik: A selected bibliography. Entomological Society of America Miscellaneous Publications 59: 126.Google Scholar
Parrella, M.P., Yost, J.T., Heinz, K.M., and Ferrentino, G.W.. 1989. Mass rearing of Diglyphus begini (Hymenoptera: Eulophidae) for biological control of Liriomyza trifolii (Diptera: Agromyzidae). Journal of Economic Entomology 82: 420425.CrossRefGoogle Scholar
Petitt, F.L., and Wietlisbach, D.O.. 1992. Intraspecific competition among same-aged larvae of Liriomyza sativae (Diptera: Agromyzidae) in lima bean primary leaves. Environmental Entomology 21: 136146.CrossRefGoogle Scholar
Petitt, F.L., and Wietlisbach, D.O.. 1994. Laboratory rearing and life-history of Liriomyza sativae (Diptera: Agromyzidae) on lima bean. Environmental Entomology 23: 14161421.CrossRefGoogle Scholar
SAS Institute. 1988. SAS/STAT User's Guide, Release 6.03 ed. SAS Institute, Cary, NC. 1028 pp.Google Scholar
Spencer, K.A. 1973. Agromyzidae (Diptera) of Economic Importance. Series Entomologica, vol. 9. Junk, The Hague. 418 pp.CrossRefGoogle Scholar
StatSoft, Inc. 1993. Statistica for the Windows Operating System Reference for Statistical Procedures. StatSoft, Inc., Tulsa, OK. 3911 pp.Google Scholar
van Lenteren, J.C. 1986. Parasitoids in the greenhouse: Successes with seasonal inoculative release systems. pp. 341374in Waage, J., and Greathead, D. (Eds.), Insect Parasitoids. Academic Press, Inc., London, UK.Google Scholar
van Lenteren, J.C., and Woets, J.. 1988. Biological and integrated pest control in greenhouses. Annual Reviews of Entomology 33: 239269.CrossRefGoogle Scholar
Zoebisch, T.G., and Schuster, D.J.. 1987. Longevity and fecundity of Liriomyza trifolii (Diptera: Agromyzidae) exposed to tomato foliage and honeydew in the laboratory. Environmental Entomology 16: 10011003.CrossRefGoogle Scholar
Zoebisch, T.G., Schuster, D.J., Smergage, G.H., and Stimac, J.L.. 1992. Mathematical descriptions of oviposition and egg and larval development of Liriomyza trifolii (Diptera: Agromyzidae) on tomato foliage. Environmental Entomology 21: 13411344.CrossRefGoogle Scholar